Sol-gel growth of Ni doped CdS on glass substrates: effect of spin coating speed and dopant concentration

Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.

2012 ◽  
Vol 616-618 ◽  
pp. 1773-1777
Author(s):  
Xi Lian Sun ◽  
Hong Tao Cao

In depositing nitrogen doped tungsten oxide thin films by using reactive dc pulsed magnetron sputtering process, nitrous oxide gas (N2O) was employed instead of nitrogen (N2) as the nitrogen dopant source. The nitrogen doping effect on the structural and optical properties of WO3 thin films was investigated by X-ray diffraction, transmission electron microscopy and UV-Vis spectroscopy. The thickness, refractive index and optical band gap energy of these films have been determined by analyzing the SE spectra using parameterized dispersion model. Morphological images reveal that the films are characterized by a hybrid structure comprising nanoparticles embeded in amorphous matrix and open channels between the agglomerated nanoparticles. Increasing nitrogen doping concentration is found to decrease the optical band gap energy and the refractive index. The reduced band gaps are associated with the N 2p orbital in the N-doped tungsten oxide films.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950092
Author(s):  
BATOOL AHMADI KHANEGAHI ◽  
HASSAN SEDGHI

In the present work, zinc sulfide thin films were deposited on glass substrates by sol–gel process with different coating speeds 3600, 4800, 6000 and 7200[Formula: see text]rpm. Zinc acetate (Zn(CH3COO)[Formula: see text]H2O) and thiourea (CH4N2S) were used as precursors. Two-methoxyethanol and monoethanolamine were used as solvent and stabilizer, respectively. The optical properties of ZnS thin films such as refractive index, extinction coefficient, dielectric function and optical band gap energy of the films were obtained by spectroscopic ellipsometry (SE) analysis method in the wavelength range of 300–800[Formula: see text]nm. The incidence angle of the layers was kept at 70∘. The measured SE parameters [Formula: see text] and [Formula: see text] are fitted against the designed model by minimizing the mean square error (MSE). Considering the data obtained, it can be deduced that the optical properties of ZnS films are highly influenced by rotation rates. The extinction coefficients of the films were increased with increasing rotation rates of the films. From these results, it is found that the energy gap of the ZnS films increases with increasing rotation rates of the films in the range of 3.13–3.20[Formula: see text]eV.


2015 ◽  
Vol 723 ◽  
pp. 528-531
Author(s):  
Jun Wang ◽  
Ling Yun Bai

TiO2 thin films were prepared on glass substrates by sol-gel method. The effect of withdraw speed on the thickness and optical properties of TiO2 thin films was investigated. The films were transparent in the visible wavelength. The thickness of the TiO2 films was increased from 90 nm for the withdraw speed of 1000 μm/s to 160 nm for the withdraw speed of 2000 μm/s. While, The refractive index of the TiO2 thin film decreased from 2.38 to 2.07. It may be due to the porosity of the film was increased. The optical band-gap of the films was around 3.45 eV.


2013 ◽  
Vol 13 (7) ◽  
pp. 1301-1305 ◽  
Author(s):  
Deuk Yong Lee ◽  
Jin-Tae Kim ◽  
Ju-Hyun Park ◽  
Young-Hun Kim ◽  
In-Kyu Lee ◽  
...  

2012 ◽  
Vol 19 (02) ◽  
pp. 1250018
Author(s):  
V. LAKSHMIPRIYA ◽  
B. NATARAJAN ◽  
N. JEYAKUMARAN ◽  
N. PRITHIVIKUMARAN

ZnO thin films were prepared onto the glass substrates by the sol–gel spin coating method for various Zn concentrations and at different spin rates. The influence of concentration of zinc and spin rate on the structural and optical properties of the ZnO thin films were investigated. It was observed that the zinc concentration and spin rate influence the grain size and morphology of the ZnO thin films. The optical band gap energy was found to increase with decrease of Zn concentration and increase in spin speed. The photoluminescence peaks show green radiation at ~485 nm. It was also observed that the enrichment of zinc and variation in spin speed influence the intensity of luminescence peaks.


2015 ◽  
Vol 1107 ◽  
pp. 637-642 ◽  
Author(s):  
Aadila Aziz ◽  
R. Mohamed ◽  
A.N. Afaah ◽  
N.A.M. Asib ◽  
M. Rusop ◽  
...  

We have successfully demonstrated ZnO/Mg thin films on Mg seeded-template by using sol-gel spin-coating and immersion technique. By increasing weight percentage of Mg, zinc particles become agglomerate and displayed flower formed as displayed in FESEM characterization. It was observed that the morphology of the zinc particles on Mg seeded-template change from inconsistently distribution for 1 and 3 % into cluster flower-like of zinc particles for 5 and 7 % weight percentage of Mg. The optical properties of the ZnO/Mg thin films were examined by UV-Vis spectroscopy and the Tauc plot methods was used to estimate the optical band gap. The study reveals that, 7 % weight percentage of Mg was recorded as the highest transmittance which is more than 60 % in visible wavelength compared to others. With the rise weight percentage of Mg, the transmittance of the thin films was increased except for 5 %. This gradually downgraded to below 60 % of transmission most probably due to the grain size that becomes bigger. The optical band gap can be tuned by using different Mg percentage to the ZnO/Mg thin films.


2012 ◽  
Vol 19 (05) ◽  
pp. 1250055 ◽  
Author(s):  
M. SALEEM ◽  
L. FANG ◽  
Q. L. HUANG ◽  
D. C. LI ◽  
F. WU ◽  
...  

Highly transparent ZnO thin films were deposited on glass substrates by using a simple and inexpensive multi-step sol–gel spin coating process. This research investigated the effects of annealing temperature in the range from 350–600°C on the microstructure, surface morphology and optical properties of thin films by using XRD, SEM and transmittance spectra. The XRD results showed that the c-axis orientation of ZnO thin films was improved with the increase of annealing temperature. The grain size increases from 16.6–19.7 nm with the increase in temperature. The transmittance spectra indicated that the transmittance and direct optical band gap Eg of the films showed a decreased trend with annealing temperature. It is found that the tensile stress exist in the films, which decreases with the increase in annealing temperature up to 500°C, on further increasing the annealing temperature up to 600°C, the stress in the film changes from tensile to compressive nature.


1970 ◽  
Vol 33 (2) ◽  
pp. 151-157 ◽  
Author(s):  
FA Chowdhury ◽  
J Begum ◽  
L Quadir ◽  
SM Firoz Hasan

Polycrystalline thin films of AgIn1-XGaXSe2 (AIGS) with varying x (0 ≤ x ≤ 1.0) have been grown onto glass substrates by stacked elemental layer (SEL) deposition technique in vacuum (~10-6 mbar). The thickness of the films was kept constant at 500 nm measured on line by frequency shift of quartz crystal. The films were annealed in situ at 300°C for 15 minutes. Structural and optical properties of the films were ascertained by X-ray diffraction (XRD) and UV-VIS-NIR spectrophotometry (photon wavelength ranging between 300 and 2500 nm) respectively. The diffractogram indicates that these films are polycrystalline in nature. The optical transmittance spectra reveal a maximum transmission of 85.91% around 1100 nm of wavelength for x = 0.2. A sharp absorption region is evident from the transmittance spectra that indicate a standard semiconducting nature of the films. The abruptness at the fundamental edge is more distinct in the film with x = 0.2. Optical transmittance, reflectance and thickness of the films were utilized to compute the absorption coefficient, band gap energy and refractive index of the films. The optical band gap is found to be direct-allowed. The band gap energy value, found from this study ranging between 2.3 to 2.4 eV, is very close for different gallium content films. The refractive indices increase almost linearly with photon wavelength range between 1300 and 1500 nm. DOI: 10.3329/jbas.v33i2.4098 Journal of Bangladesh Academy of Sciences, Vol. 33, No. 2, 151-157, 2009


2009 ◽  
Vol 79-82 ◽  
pp. 703-706
Author(s):  
Shan Yu Quan ◽  
Ming Tian ◽  
Lin Mei Yang

ZnO thin films have been deposited onto the glass substrates by the sol-gel spin coating method at different chuck rotation rates. The effect of deposition parameters on the structural, optical and electrical properties of the ZnO thin films was investigated. The crystal structure and orientation of the ZnO thin films were investigated by X-ray diffraction (XRD) patterns. The optical absorbance and transmittance measurements were recorded by using a double beam spectrophotometer. The optical absorption studies reveal that the transition is direct band gap energy. The I-V plots of the ZnO thin films were carried out in dark and under UV-illumination. The result shows the obtained ZnO thin films can be used as a photovoltaic material.


1998 ◽  
Vol 12 (15) ◽  
pp. 1573-1583 ◽  
Author(s):  
A. Hartridge ◽  
M. Ghanashyam Krishna ◽  
A. K. Bhattacharya

Thin films of Ce 1-x Y x O 2-y where x ranges from 0 to 0.5 have been coated onto glass substrates using an inorganic sol–gel approach at low temperature. The lattice parameters from powder diffraction measurements were calculated and shown to be very close to those previously reported. Crystallite size measurements indicated that the films were nanocrystalline, the size decreasing as a function of dopant concentration. The films are transparent in the region 500 to 1500 nm with very low optical losses. The film refractive index is dependent on the dopant concentration and peaks at an yttria concentration of x=0.25 after treatment at 450° C , with a value of 1.79, which on increasing the yttria concentration to x=0.50 decreases to 1.65 in the dispersion free region. The optical band gap is also dependent on the dopant concentration and is in the range 3.2 to 3.0 eV.


Sign in / Sign up

Export Citation Format

Share Document