Integrated Design of Wing Panel Manufacture Processes

2013 ◽  
Vol 554-557 ◽  
pp. 2175-2186
Author(s):  
Alexander Ivanovich Oleinikov

ALEXANDER IVANOVICH OLEINIKOV Aircraft Engineering Faculty, Komsomolsk-on-Amur State Technical University Lenina prospect 27, 681013 Komsomolsk-on-Amur, Russian Federation [email protected] Keywords: forming, creep, age, transversely isotropic, kind of the stress state effect, wing panel, inverse problem, reverse engineering, computer-aided process design system. Abstract. Problems of inelastic straining of three-dimensional bodies with large displacements and turns are considered. In addition to the sought fields, surface forces and boundary displacements, original size and shape have also to be determined from specified residual displacements in these problems. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We proposed the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence [1]. The forming process considered includes two stages: active stage of elastoviscoplastic straining of the blank in the die tooling and passive stage of unloading of the blank withdrawn from the die tooling. The final stress-strain state at the active stage is the initial state for the passive stage. Unloading is considered as purely elastic straining, with no increments of inelastic strains. The active stage, in turn, also includes two steps. At the first step, the frontal faces of the “cold” blank are pressed to the working surfaces of the die tooling, which results in elastoplastic straining of the blank. The second step includes the processes of stress relaxation and creep strain in the blank fixed in this die tooling during a given time at an elevated ageing temperature. Computer modeling of these forming processes involves the use of the finite element method for consecutive solutions of three-dimensional quasi-static problems of elastoplastic straining, relaxation, and unloading, and also determining boundary conditions from given residual displacements [2] . The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. System application data resulting from computation of 3D-involute of a CAD-based panel model, determination of working surfaces of die tooling, three-dimensional analysis of stresses, and simulation of panel shaping under diverse thermo-mechanical and speed conditions are demonstrated. Modeling of forming of wing panels of the SSJ-100 aircraft are considered [2,3]. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming [3]. References [1] A.I. Oleinikov, Models for the steady-state creep of transversely isotropic materials with different tension and compression characteristics, J. Ind. Appl. Math. 5 (2011) 406-409. [2] B.D. Annin, A.I. Oleinikov and K.S. Bormotin, Modeling of forming of wing panels of the SSJ-100 aircraft, J. Appl. Mech. Physics 51 (2010) 579-589. [3] A.I. Oleinikov, A.I. Pekarsh, Integrated Design of Integral Panel Manufacture Processes. Dalnauka, Vladivostok, 2010.

1980 ◽  
Vol 47 (2) ◽  
pp. 329-334 ◽  
Author(s):  
Z. Hashin

Three-dimensional failure criteria of unidirectional fiber composites are established in terms of quadratic stress polynomials which are expressed in terms of the transversely isotropic invariants of the applied average stress state. Four distinct failure modes—tensile and compressive fiber and matrix modes—are modeled separately, resulting in a piecewise smooth failure surface.


2011 ◽  
Vol 338 ◽  
pp. 300-303
Author(s):  
Chang Hong Guo ◽  
Ping Xi ◽  
Zhen Yu Wang ◽  
Xing Dong Li

Along with the CAD technology being popularized, three-dimensional design of aircraft is ultimately realized into digital design. However, aircraft tolerances have not been designed by computer. They are mainly based on lots of manual calculations and not coordinated with integrated design and hold back the development of aircraft digital design and manufacture technologies. This paper introduces how to develop computer-aided aircraft tolerance analysis and distribution modules on UG and introduces Monte Carlo tolerance analysis technology. Running instances of aircraft tolerance design are illustrated in the paper.


Author(s):  
Jae-Jun Han ◽  
Kuk-Hee Lee ◽  
Yun-Jae Kim ◽  
Kamran Nikbin ◽  
David Dean

This paper describes steady-state stress on welded branch components using detailed three dimensional elastic creep finite element analyses. In our previous paper [1], it was found that the mismatch effect in creep on steady-state stresses within the weld metal for a various branch junction could be uniquely quantified by the mis-match factor, defined as a function of creep exponent and constant. In actual branch components, the branch junction contains the heat-affected zone (HAZ) when the branch pipe is welded. Thus, additional mismatch factor for HAZ should be presented. This paper deals with not only the mismatch effect for weld metal but also that for HAZ. The creep exponent and constant for the base and weld metal as well as HAZ were systematically varied to analyze under-matching, even-matching and over-matching conditions in creep. In order to investigate the effect of the loading mode, FEA was carried out under internal pressure and in-plane bending to the branch pipe. Two geometries such as large bore branch and medium bore branch were considered. It was found that steady-state creep stresses within HAZ can be quantified as mismatch factor with specific characteristics.


1982 ◽  
Vol 14 (5) ◽  
pp. 598-602
Author(s):  
A. Yakovlyuk ◽  
E. Meleshko ◽  
S. Onopyuk

1995 ◽  
Vol 403 ◽  
Author(s):  
Y.-L. Shen ◽  
S. Suresh

AbstractThe steady-state creep response of multilayered polycrystalline materials subjected to cyclic variations in temperature is analyzed. The approach presented here is capable of predicting the evolution of curvature, the thermal stresses, and the dominant deformation mechanisms at any through-thickness location of each layer for prescribed layer geometries and thermo-mechanical properties of the constituent layers. The Al-Al2O3 model system is considered, where the dominant relaxation mechanism in Al is studied as the layer thickness is systematically varied. Creep due to grain boundary diffusion is found to become more significant in thin layers with a three-dimensional equiaxed grain structure. The effects of columnar grain structure in Al thin films on the thermal cycling response are also discussed.


Author(s):  
Деніс Миколайович Данилюк ◽  
Геyнадій Анатолійович Вірченко

Previously applied methods of designing aircraft based on two-dimensional geometric models that made it impossible to take into account all the necessary design and technological features. It was a prerequisite for the development of an integrated methodology that includes design and computer simulation of three-dimensional parametric design of the aircraft as a whole and its individual parts [2-5]. In this paper, the method of computer-aided design stringer at the master model geometry and space allocation wing aircraft.In article approaches to integrated computer-aided design. These types of problems preliminary design and the method of calculation of typical aircraft structural elements for example longitudinal force element sets as stringer. Also, the algorithm constructs a fully stringer system aided design of integrated Siemens NX. What can shorten the design time and use it as a reference for the calculation and further change just values for other dimensions stringers.Methods integrated design ensure the application of standard parametric analytical stringers in the calculation of aerodynamics and strength, life and vitality, weight of the aircraft and its alignment, safety of structures, as well as technological preparation of production and quality control, maintenance and repair.Considered aided design techniques can be extended to other than the stringers typical elements airframe.


2021 ◽  
Author(s):  
Jiabing Zhang ◽  
Xiaohu Zhang ◽  
Zhen Huang ◽  
Helin Fu

Abstract The layered surrounding rocks of deep tunnels undergo large creep deformation due to the presence of planes of weakness and the presence of prolonged high in-situ stress, thereby the deformation severely endangers the safety of tunnels. This study conducts uniaxial compression creep tests to experimentally investigate the transversely isotropic creep characteristics and the damage mechanism of layered phyllite samples having bedding angles of 0°, 22.5°, 45°, 67.5°, and 90°. The results indicate that the creep deformation of the specimens takes place in four stages: the instantaneous elastic deformation stage, the deceleration creep stage, the steady-state creep stage, and the accelerated creep stage. The cumulative creep deformation and the creep time during the steady-state creep stage of the specimens initially decrease and then increase as the bedding angle changes from 0° to 90°, thereby, corresponding to the initial increase and subsequent decrease in creep rate during the deceleration creep stage. Based on the existing viscoelastic-plastic damage creep model, the creep parameters E1, E2, η2, and η3 are observed to initially decrease and then increase with the increase in bedding angle, hence demonstrating that the creep characteristics and damage mechanism of the layered rock mass are controlled by the effect of the natural weakness planes and show significant transversely isotropic characteristics.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
J. P. Rouse ◽  
W. Sun ◽  
T. H. Hyde ◽  
A. Morris ◽  
W. Montgomery

Pipe bends are regions of geometric discontinuities in the pipe systems used in power plants and most industry recorded failures have been located around similar regions. Understanding these potential locations of weakness is therefore of great interest for the safe and economic operation of piping components. Increased predictive accuracy would assist in component design, condition monitoring, and retirement strategy decisions. Modeling of piping components for finite element analysis (FEA) is complicated by the variation of the cross section dimensions (changes in wall thicknesses or cross section ovality) around the pipe bend due to the manufacturing procedure implemented. Quantities such as peak rupture stress and creep rupture life can be greatly affected by these geometric variation (Rouse, J. P., Leom, M. Z., Sun, W., Hyde, T. H., Morris, A., “Steady-state Creep Peak Rupture Stresses in 90 Pipe Bends with Manufacture Induced Cross Section Dimension Variations”International Journal of Pressure Vessels and Piping, Volumes 105–106, May–June 2013, pp. 1–11). Three dimensional (3D) models can be used to approximate to the realistic level of detail found in pipe bends. These simulations may however be computationally expensive and could take a considerable amount of time to complete. Two dimensional (2D) axisymmetric models are relatively straight forward to produce and quick to run, but of course cannot represent the full geometric complexity around the pipe bend. A method is proposed that utilises multiple 2D axisymmetric pipe bend models to approximate the result of a 3D analysis through interpolation, thus exploiting the greatly reduced computing time observed for the 2D models. The prediction of peak rupture stress (both magnitude and location) is assessed using a simple power law material model. Comments are made on the applicability of the proposed procedure to a range of bends angles (90 deg, 60 deg, and 30 deg), as well as the effect of the stress exponent (n) and tri-axial (α) material constants. Provided that peak stresses do not occur at the bend/straight interface, the magnitude and location of the peak rupture stress can be predicted by the 2D axisymmetric interpolation method with a typical percentage difference of less than 1%.


Sign in / Sign up

Export Citation Format

Share Document