The Design of the Drive System of the Crank Underdrive Quick Presses

2013 ◽  
Vol 584 ◽  
pp. 189-193
Author(s):  
Mao Hua Xiao ◽  
Fei Yang ◽  
Zun Mang Ke ◽  
Si Hong Zhu ◽  
Deng Song Xiao

Based on production needs, a main transmission mechanism of underdrive speed press was designed in this paper. The design of the main transmission mechanism is the improvements and alternative of sine institutions slider-crank mechanism made. Underdrive and dual slider mechanism were designed, in order to achieve the presses punching process. The nominal pressure angle and the nominal torque were calculated. A preliminary calculation and design of the crankshaft, bearings, slider of the main drive mechanism. Ensure reliable operation and to provide a basis for the optimization design.

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jianneng Chen ◽  
Xincheng Sun ◽  
Chuanyu Wu ◽  
Dadu Xiao ◽  
Jun Ye

AbstractThe noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields. Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China, whereas two pulley noncircular synchronous belt transmissions have been developed overseas. However, owing to the noncircular characteristics of the belt pulley, the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant, resulting in high probabilities of skipping and vibration. In this study, a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning, with no skipping; hence, the non-uniform output characteristic of the driven pulley is consistent with the theoretical value. In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism, the pitch curve of the driving synchronous belt pulley is circular, whereas those of the driven synchronous belt and tensioning pulleys are noncircular. To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley, an automatic optimization model of the tensioning pulley pitch curve is established. The motion simulation, analysis, and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written, and the variation in belt length slack under different speed ratios is analyzed based on several examples. The testbed for a circular–noncircular–noncircular three-pulley noncircular synchronous belt transmission mechanism is developed. The test shows that the three-pulley noncircular synchronous belt drives well. This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism; it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.


2013 ◽  
Vol 302 ◽  
pp. 574-577 ◽  
Author(s):  
Xian Teng Han ◽  
Yu Wang ◽  
He Ting Tong

At present, Cartesian Coordinate Robot driving systems have several ways, such as timing-belt, screw, rack-pinion and chain. But, they are difficult to synchronously meet needs of high precision, long range and heavy load. In this paper, Trochoid Cam Gear (TCG) was used as main transmission mechanism to implement high precision and long range motion of the secondary girder of a Cartesian Coordinate Robot, and disposed reasonably the space positions of linear rails and servo motors to meet the needs of heavy load.


2011 ◽  
Vol 121-126 ◽  
pp. 1636-1640
Author(s):  
Ying Qiu ◽  
Wei Min Li ◽  
Zhi Wei

Servo presses are widely used in high-precision, complicated forming process fields and promoted around the world in recent years. It is the trend of forging machinery for its servo motor-based digital heavy haul driven technology. At present, it becomes the hot research field. The structure characteristics of triangular elbow servo press were firstly introduced in the paper. And then the kinematics mathematical model of triangular elbow transmission mechanism was deduced and given. Based on it, this paper provides the slider kinematics analysis by Matlab. The slider motion law under various parameters can be analyzed and compared. The results would be useful reference for optimization design of transmission mechanism. The case study provides more visual and reliable decision basis for designer.


2013 ◽  
Vol 552 ◽  
pp. 44-51
Author(s):  
Chen Wei Ning ◽  
Cao Jian Zhong ◽  
Yang Hong Tao ◽  
Zhang Jian ◽  
Fan Zhe Yuan ◽  
...  

Zoom lens has been widely applied in all kinds of fields, and its cam optimization is the key to actualizing the performance of its optical design and the zooming process, while the smoothness and speediness of zooming movement must be considered for military and civilian use. With the incremental use of environmental requirements, it puts forward higher requests to the cam performance of lens. In order to guarantee that the cam has good stiffness in the case of vibration and shock environment, in the process of cam design, it not only requires curve optimal, but also needs to consider influence on the performance which is caused by reduced cam stiffness of the zoom system. A fine curve can ensure that the cam pressure angle α is smaller, and to ensure the cam follower maintains the uniform velocity and smaller acceleration in zooming process, and make the zoom system produce little impact, and whole zooming process smooth and fluent, it can reduce the zoom systems driving moment M, and can ensure the stability imaging of the zoom system. Good cam stiffness K can make the zoom lens have good stability in vibration environment, and make sure that the image quality. M and K respectively up to the pressure angle α of zoom curve and the rotation angle θ of zoom curve in cam. In the new cam design process, considering the whole influence on the performance that is caused by K and M to cam, we construct the function expressions K = f (α, θ) and M = f (α, θ), and then, build target optimization function with K and M, optimize the relationship between pressure angle α of zoom curve and rotation angle θ, looking for the optimal value for the stiffness K and the cam system driving moment M , and improve overall performance of the zoom cam .


2020 ◽  
Vol 164 ◽  
pp. 03051 ◽  
Author(s):  
Kirill Kobzev

The most important link in the forging equipment is a crank mechanism. Their significant drawback is the unbalanced inertia forces of the moving masses of the crank mechanism, which cause vibration. The analysis of the phenomena occurring in the mechanism and the assessment of the technological process are based on the theory of chains, which allows analytically analyzing the dynamic characteristics of systems with a large number of degrees of freedom, based on the analysis of one structural element. The study of the process of force interaction inevitably comes down to the construction of a mathematical model of mechanisms, the formative movement of which leads to its formation. One of the partial systems makes an irregular programmed motion, meaning the crank drive mechanism. In addition, unwanted vibrations caused by kinematic excitation are superimposed on this drive. According to numerous papers on this topic, significant dynamic errors arise due to vibration accelerations. One of the main tasks in reducing the vibration activity and, accordingly, the level of acoustic emission of the process under study is to ensure the required law of motion of the instrument. On this basis, the study of the stability of formative movements is of particular importance. This question is complicated by the fact that in the processing, there is a change in the process parameters and, consequently, in the characteristics of the friction coupling. The latter circumstance presupposes the evolution of the system under study, and therefore the need for process control.


2012 ◽  
Vol 479-481 ◽  
pp. 876-879
Author(s):  
Xian Zhi Li ◽  
Bao Lin Yin ◽  
Chun Shan Liu ◽  
Si Yu Chen

This article analyzes the NGW type planetary gear transmission mechanism and structure, establishes boundary constraint conditions and mathematics optimization model in view of the smallest volume's project objective. It can realize the NGW type planetary gear transmission optimization design through compiling corresponding computer program, obtain the optimization design parameters. In optimization design's foundation, it applies the CAD technology to establish drawing program, realizes the parametric drawing.


2012 ◽  
Vol 538-541 ◽  
pp. 3066-3069 ◽  
Author(s):  
Ning Ding ◽  
Ding Tong Zhang

To eliminate the disadvantages of the lifting electromagnet, the Rare Earth lifting permanent magnet was designed. The magnetic circuit intelligent optimization design was developed. Moreover, a perfect self-acting driving system has been invented. Industry prototypes were manufactured, and they verified that the developed intelligent optimization model is valid; the drive system is feasibility.


Sign in / Sign up

Export Citation Format

Share Document