Ionizing Radiation Effect on PMMA Measured by Microhardness

2013 ◽  
Vol 586 ◽  
pp. 198-201 ◽  
Author(s):  
David Manas ◽  
Martin Ovsik ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Jakub Javorik ◽  
...  

The experimental study deals with the effect of modification of the surface layer by irradiation cross-linking on the mechanical properties of the Poly (methyl methacrylate) - PMMA tested using the instrumented microhardness test. The surface layer of PMMA specimen made by injection technology was modified by irradiation cross-linking using beta irradiation, which significantly influences mechanical properties of the surface layer. Compared to the heat and chemical-heat treatment of metal materials (e.g. hardening, nitridation, case hardening), cross-linking in polymers affects the surfaces in micro layers. These mechanical changes of the surface layer are observed in the instrumented microhardness test. Our research confirms the comparable properties of surface layer of irradiated PMMA with highly efficient polymers. The subject of this research is the influence of irradiation dosage on the changes of mechanical properties of PMMA.

2014 ◽  
Vol 1025-1026 ◽  
pp. 405-409
Author(s):  
David Manas ◽  
Martin Ovsik ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Karel Kocman ◽  
...  

The experimental study deals with the effect of modification of the surface layer by irradiation cross-linking on the micromechanical properties of the low-density polyethylene (LDPE) tested using the instrumented nanohardness test. The surface layer of LDPE specimen made by injection technology was modified by irradiation cross-linking using beta irradiation, which significantly influences micromechanical properties of the surface layer. Compared to the heat and chemical-heat treatment of metal materials (e.g. hardening, nitridation, case hardening), cross-linking in polymers affects the surfaces in micro layers. These micromechanical changes of the surface layer are observed in the instrumented microhardness test. Our research confirms the comparable properties of surface layer of irradiated LDPE with highly efficient polymers. The subject of this research is the influence of irradiation dosage on the changes of micromechanical properties of surface layer of LDPE.


2016 ◽  
Vol 699 ◽  
pp. 37-42 ◽  
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Reznicek

Radiation crosslinking of polyamidu 6 (PA 6) is a well-recognized modification of improving basic material characteristics. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behaviour. This research paper deals with the possible utilization of irradiated PA6. The material already contained a special cross-linking agent TAIC (5 volume %), which should enable subsequent cross-linking by ionizing β – radiation (15, 30 and 45 kGy). The effect of the irradiation on mechanical behavior of the tested PA 6 was investigated. Material properties created by β – radiation are measured by nanoindentation test using the DSI method (Depth Sensing Indentation). Hardness increased with increasing dose of irradiation at everything samples; however results of nanoindentation test shows increasing in nanomechanical properties of surface layer. The highest values of nanomechanical properties were reached radiation dose of 45 kGy, when the nanomechanical values increased by about 95%. These results indicate advantage cross-linking of the improved mechanical properties.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1163-1166 ◽  
Author(s):  
Petr Kratky ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Ovsik ◽  
...  

Influence of mechanical properties of the hard surface layer of modified polyamide 6 is studied. Mechanical properties are acquired by nanohardness test with using the DSI method (Depth Sensing Indentation). Hard surface layers are created by radiation cross-linking technology. This technology allows polymer materials modification followed by the change of their end-use properties. The surface layer of polymer material is modified by ionizing β - radiation. When the polymer material is exposed to the β radiation, it is possible to observe changes of the surface layer at applied load. Radiation cross-linking usually improves strength, reduces creep, contributes to chemical resistance improvement, and in many cases improves tribological properties.


2015 ◽  
Vol 752-753 ◽  
pp. 357-362
Author(s):  
David Manas ◽  
Martin Ovsik ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Marcela Spanhelova ◽  
...  

The process of radiation crosslinking helps to improve some mechanical properties of polymer materials. Some types of polymers do not cross-link during radiation crosslinking but degrade. In order to create 3D net in the polymer structure it is necessary to add a crosslinking agent. The specimens were prepared by injection technology with the TAIC crosslinking agent at 0, 1, 2 and 3 %. The changes of micromechanical properties of the surface layer were measured by instrumented microhardness test. It was found that micromechanical properties of the surface layer of the tested polyamide changed.


2015 ◽  
Vol 1120-1121 ◽  
pp. 3-6
Author(s):  
David Manas ◽  
Martin Ovsik ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Pavel Stoklasek ◽  
...  

The process of radiation crosslinking helps to improve some mechanical properties of polymer materials. Micromechanical changes in the surface layer of glass-filled PA-6 modified by beta radiation were measured by instrumented test of microhardness. The specimens were prepared by injection technology and subjected to radiation doses of 0, 66, 99, 132 kGy. Measurements of microhardness showed considerable changes of behavior of surface layer in middle as well as high radiation doses with higher values of indentation hardness and stiffness.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1198-1201 ◽  
Author(s):  
David Manas ◽  
Martin Ovsik ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Pavel Stoklasek ◽  
...  

The process of radiation crosslinking helps to improve some mechanical properties of polymer materials. Micromechanical changes in the surface layer of Thermoplastic elastomer (TPE-E) modified by beta radiation were measured by instrumented test of microhardness. The specimens were prepared by injection technology and subjected to radiation doses of 0, 66, 99, 132 kGy. Measurements of microhardness showed considerable changes of behavior of surface layer in middle as well as high radiation doses with higher values of indentation hardness and stiffness.


2015 ◽  
Vol 662 ◽  
pp. 177-180 ◽  
Author(s):  
Ales Mizera ◽  
Miroslav Manas ◽  
David Manas ◽  
Martin Ovsik ◽  
Martina Kaszonyiová ◽  
...  

The presented article deals with the research of surface layer ́s micro-mechanical properties of modified LDPE by radiation cross-linking after temperature load. These micro-mechanical properties were measured by the DSI (Depth Sensing Indentation) method on samples which were non-irradiated and irradiated by different doses of the β – radiation and then were temperature loaded. The purpose of the article is to consider to what extent the irradiation process influences the resulting micro-mechanical properties measured by the DSI method. The LDPE tested showed significant changes of indentation hardness and modulus after temperature load.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1179-1182
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Adam Skrobak ◽  
...  

Cross-linking is a process in which polymer chains are associated through chemical bonds. This research paper deals with the possible utilization of irradiated polyamide. Influence of the intensity of irradiation on micro-indentation hardness was investigated. Material properties created by β – radiation are measured by micro-indentation test using the DSI method (Depth Sensing Indentation). Hardness increased with increasing dose of irradiation at everything samples; however results of micro-indentation test shows increasing in micro-mechanical properties of surface layer. The highest values of micro-mechanical properties were reached radiation dose of 99 kGy, when the micro-mechanical values increased by about 18%.


2015 ◽  
Vol 662 ◽  
pp. 185-188 ◽  
Author(s):  
David Manas ◽  
Miroslav Manas ◽  
Ales Mizera ◽  
Michal Stanek ◽  
Martin Bednarik ◽  
...  

The presented article deals with the research of micro-mechanical properties in the surface layer of modified Polypropylene filled by 25% of glass fibers. These micro-mechanical properties were measured by the Depth Sensing Indentation - DSI method on samples which were non-irradiated and irradiated by different doses of the β - radiation. Radiation doses used were 0, 66 and 99 kGy for filled Polypropylene with the 6% cross-linking agent (triallyl isocyanurate). The change of micromechanical properties is greatly manifested mainly in the surface layer of the modified polypropylene where a significant growth of microhardness values can be observed.


2018 ◽  
Vol 919 ◽  
pp. 111-119
Author(s):  
Martin Ovsik ◽  
Michal Stanek ◽  
Vojtech Senkerik

Cross-linking is a process in which polymer chains are associated through chemical bonds. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behavior. This paper studies the effect of different doses of ionizing beta radiation on the micro-mechanical properties of commercially available polyamide. The measured results indicate, that electron beam irradiation is very effective tool for improvement of surface properties of PA6. In terms of micro-mechanical properties, the values of micro-hardness of surface layer increased by 24% at radiation dose of 132 kGy, stiffness of surface micro layer by 26% (132 kGy) as a result of different loads (0.5N and 2N). Improvement of micro-mechanical properties of radiated polyamide has a great significance also for industry. The modified polyamide shifts to the group of materials that have considerably better properties. Its micro-mechanical properties make polyamide ideal for a wide application in areas where higher resistance to wear, creep are required. Commonly manufactured PA6 can hardly fulfil these criteria.


Sign in / Sign up

Export Citation Format

Share Document