Experimental Investigation of Flax FRP Tube Confined Coconut Fibre Reinforced Concrete

2013 ◽  
Vol 594-595 ◽  
pp. 416-420 ◽  
Author(s):  
Li Bo Yan ◽  
Nawawi Chouw ◽  
Krishnan Jayaraman

The compressive and flexural performance of flax fibre reinforced polymer (FFRP) confined coconut fibre reinforced concrete (CFRC) structures were investigated. The mass content of coconut fibre considered was 1% of cement. Eighteen cylinders were tested under uniaxial compression and 12 beams were tested under four-point bending. Test results show that in compression, both FFRP tube and FFRP wrapping confinements enhance the axial compressive strength and ultimate strain of concrete significantly, e.g. the ultimate strength of 4-layer FFRP tube confined CFRC is 94% larger than that of the unconfined CFRC. In flexure, the FFRP tube increases the lateral load bearing capacity and the deflection several times larger than the unconfined concrete columns, e.g. the ultimate lateral load of 4-layer FFRP confined PC and CFRC are 1066% and 946% larger than the corresponding unconfined PC and CFRC specimens. In flexure, coir inclusion can affect the failure mode of the FFRP-CFRC composite structure significantly.

2015 ◽  
Vol 1106 ◽  
pp. 49-52
Author(s):  
Martin Tipka ◽  
Jitka Vašková

The paper deals with an investigation of tensile properties of concrete and fibre reinforced concrete using the test in uniaxial tension. This arrangement is technically more difficult compared to the commonly used bending test, but allows easier determination of strength-deformation parameters of material. The advantage of the test is the possibility of direct analysis of the post-peak part of the stress-strain diagram in tension. The article describes the recommended test arrangement and analyzes methodology of loading. Attention is focused on the critical phase of the loading process and subsequent evaluation of results. In the experimental research was compared strength and corresponding strain of specific fibre reinforced concrete, obtained in three-point and four-point bending test, and the uniaxial tension test. The results of this comparative study are presented in the conclusion.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2127
Author(s):  
Richard Fürst ◽  
Eliška Fürst ◽  
Tomáš Vlach ◽  
Jakub Řepka ◽  
Marek Pokorný ◽  
...  

Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3795
Author(s):  
Fernando Suárez ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

The size effect on plain concrete specimens is well known and can be correctly captured when performing numerical simulations by using a well characterised softening function. Nevertheless, in the case of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since using only diagram cannot capture the material behaviour on elements with different sizes due to dependence of the orientation factor of the fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of polyolefin-fibre-reinforced concrete elements, but only if it is previously adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-fibre-reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means of a well-known embedded cohesive model, with a trilinear softening function that is defined specifically for each specimen size. The fundamental points of these softening functions are defined a priori by using empirical expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical results are obtained in a predictive manner and then compared with a previous experimental campaign in which PFRC notched specimens of different sizes were tested with a three-point bending test setup, showing that this approach properly captures the size effect, although some values of the fundamental points in the trilinear diagram could be defined more accurately.


2017 ◽  
Vol 152 ◽  
pp. 529-538 ◽  
Author(s):  
Eduardo Galeote ◽  
Ana Blanco ◽  
Sergio H.P. Cavalaro ◽  
Albert de la Fuente

2020 ◽  
Vol 72 (21) ◽  
pp. 1125-1134
Author(s):  
Wenjie Wang ◽  
Tongyue Zhang ◽  
Nawawi Chouw ◽  
Zhongxian Li ◽  
Zhaodong Xu

Sign in / Sign up

Export Citation Format

Share Document