scholarly journals Alveolar Bone Augmentation

2014 ◽  
Vol 614 ◽  
pp. 89-94 ◽  
Author(s):  
Cena Dimova ◽  
Kiro Papakoca ◽  
Velko Papakoca

Bones and teeth are the only structureswithin the body where calciumandphosphate participate asfunctional pillars. Despite their mineralnature, both organs are vital and dynamic. The aim was to remark the indications for alveolar augmentation after tooth extraction and prior the placement of endoosseous dental implants. The autograft, allograft, alloplast, and xenograftmaterials all have reported success, alone or in combination,for particulate bone augmentation. Theparticulate autograft is the gold standard for mostcraniofacial bone grafting, including the treatmentof dental implant–related defects. Advantages of alveolar ridge augmentation with sufficient bone volume to adjust for uncompromised and esthetic implant placement, renders these procedures more than effective for majority of patients. Surgical reconstruction of the tissues and the procedure of ridge augmentation and subsequent placement of dental implant are necessary.

2020 ◽  
Vol 99 (4) ◽  
pp. 402-409 ◽  
Author(s):  
G. Avila-Ortiz ◽  
M. Gubler ◽  
M. Romero-Bustillos ◽  
C.L. Nicholas ◽  
M.B. Zimmerman ◽  
...  

Alveolar ridge preservation (ARP) therapy is indicated to attenuate the physiologic resorptive events that occur as a consequence of tooth extraction with the purpose of facilitating tooth replacement therapy. This randomized controlled trial was primarily aimed at testing the efficacy of ARP as compared with unassisted socket healing. A secondary objective was to evaluate the effect that local phenotypic factors play in the volumetric reduction of the alveolar bone. A total of 53 subjects completed the study. Subjects were randomized into either the control group, which involved only tooth extraction (EXT n = 27), or the experimental group, which received ARP using a combination of socket grafting with a particulate bone allograft and socket sealing with a nonabsorbable membrane (dPTFE) following tooth extraction (ARP n = 26). A set of clinical, linear, volumetric, implant-related, and patient-reported outcomes were assessed during a 14-wk healing period. All linear bone assessments (horizontal, midbuccal, and midlingual reduction) revealed that ARP is superior to EXT. Likewise, volumetric bone resorption was significantly higher in the control group (mean ± SD: EXT = −15.83% ± 4.48%, ARP = −8.36% ± 3.81%, P < 0.0001). Linear regression analyses revealed that baseline buccal bone thickness is a strong predictor of alveolar bone resorption in both groups. Interestingly, no significant differences in terms of soft tissue contour change were observed between groups. Additional bone augmentation to facilitate implant placement in a prosthetically acceptable position was deemed necessary in 48.1% of the EXT sites and only 11.5% of the ARP sites ( P < 0.004). Assessment of perceived postoperative discomfort at each follow-up visit revealed a progressive decrease over time, which was comparable between groups. Although some extent of alveolar ridge remodeling occurred in both groups, ARP therapy was superior to EXT as it was more efficacious in the maintenance of alveolar bone and reduced the estimated need for additional bone augmentation at the time of implant placement (ClinicalTrials.gov NCT01794806).


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Gaia Pellegrini ◽  
Giorgio Pagni ◽  
Giulio Rasperini

Guided tissue regenerative (GTR) therapies are performed to regenerate the previously lost tooth supporting structure, thus maintaining the aesthetics and masticatory function of the available dentition. Alveolar ridge augmentation procedures (GBR) intend to regain the alveolar bone lost following tooth extraction and/or periodontal disease. Several biomaterials and surgical approaches have been proposed. In this paper we report biomaterials and surgical techniques used for periodontal and bone regenerative procedures. Particular attention will be adopted to highlight the biological basis for the different therapeutic approaches.


2020 ◽  
Vol 11 (3) ◽  
pp. 96-101
Author(s):  
James Chesterman ◽  
Kathryn Durey ◽  
Martin Chan

We review the outcome data of patients who underwent horizontal alveolar ridge augmentation to assess the viability of equine xenograft blocks.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Ferdinando Attanasio ◽  
Andrea Pacifici ◽  
Amerigo Giudice ◽  
Antonella Polimeni ◽  
Luciano Pacifici

Alveolar ridge deficiency is considered a major limitation for successful implant placement. Various approaches have been developed to horizontal augmentation of bone volume. This case report presents the medium-term results of one-stage guided bone augmentation using an anorganic bovine bone (70%) and autologous bone (30%), placed in layers, in association with resorbable collagen membrane for a subsequent implant placement. The patient presented with a localized horizontal ridge defect in the posterior zone of the jaw. The clinical and radiographic presentations, as well as relevant literature, are presented.


2004 ◽  
Vol 30 (2) ◽  
pp. 74-82 ◽  
Author(s):  
John C. Minichetti ◽  
Joseph C. D'Amore ◽  
Anna Y. J. Hong ◽  
Deborah B. Cleveland

Abstract Because clinicians are placing more dental implants, it is becoming more important to maintain bone volume after tooth extraction. This article discusses the various bone-augmentation materials available to the clinician and illustrates a case report of particulate mineralized bone allograft (Puros) placement after extraction. Exposure of the grafted site after 5 months revealed a hard bony structure. Human histologic analysis at the light microscopic level revealed nonvital spicules of mature calcified bone having a highly organized matrix surrounded by viable noncalcified immature bone matrix, or osteoid. It was concluded that mineralized human allograft demonstrated the formation or remodeling of bone histologically and was clinically useful to maintain bone volume for implant placement after extraction. To the authors' knowledge, this is the first publication to demonstrate human histology of particulate mineralized bone allograft (Puros) after placement into an extraction site.


10.1563/749.1 ◽  
2006 ◽  
Vol 32 (3) ◽  
pp. 137-141 ◽  
Author(s):  
Miguel Peñarrocha-Diago ◽  
M. Dolores Gómez-Adrián ◽  
Abel García-García ◽  
Fabio Camacho-Alonso ◽  
Javier Rambla-Ferrer

Abstract Extensive bone defects complicate the adequate placement of dental implants and the required angulation. In such cases, alveolar-ridge augmentation techniques such as guided bone regeneration, particulate or block grafting, and alveolar bone distraction are needed. The present study describes a case in which a large vertical bone defect in the anterior mandibular zone was corrected via vertical alveolar bone distraction. Six dental implants were posteriorly placed for implant-supported restoration of the mandible, with early implant loading. The clinical and radiologic control showed good implant and soft tissue conditions 12 months later.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3286
Author(s):  
Hotaka Kawai ◽  
Shintaro Sukegawa ◽  
Keisuke Nakano ◽  
Kiyofumi Takabatake ◽  
Sawako Ono ◽  
...  

The purpose of this study was to investigate the bone healing properties and histological environment of a u-HA/PLLA/PGA (u-HA—uncalcined and unsintered hydroxyapatite, PLLA—Poly L-lactic acid, PGA—polyglycolic acid) composite device in humans, and to understand the histological dynamics of using this device for maxillofacial treatments. Twenty-one subjects underwent pre-implant maxillary alveolar ridge augmentation with mandibular cortical bone blocks using u-HA/PLLA or u-HA/PLLA/PGA screws for fixation. Six months later, specimens of these screws and their adjacent tissue were retrieved. A histological and immunohistochemical evaluation of these samples was performed using collagen 1a, ALP (alkaline phosphatase), and osteocalcin. We observed that alveolar bone augmentation was successful for all of the subjects. Upon histological evaluation, the u-HA/PLLA screws had merged with the bone components, and the bone was directly connected to the biomaterial. In contrast, direct bone connection was not observed for the u-HA/PLLA/PGA screw. Immunohistological findings showed that in the u-HA/PLLA group, collagen 1a was positive for fibers that penetrated vertically into the bone. Alkaline phosphatase was positive only in the u-HA/PLLA stroma, and the stroma was negative for osteocalcin. In this study, u-HA/PLLA showed a greater bioactive bone conductivity than u-HA/PLLA/PGA and a higher biocompatibility for direct bone attachment. Furthermore, u-HA/PLLA was shown to have the potential for bone formation in the stroma.


Author(s):  
J. S. Hanker ◽  
B. L. Giammara

Nonresorbable sintered ceramic hydroxylapatite (HA) is widely employed for filling defects in jaw bone. The small particles used for alveolar ridge augmentation in edentulous patients or for infrabony defects due to periodontal disease tend to scatter when implanted using water or saline as the vehicle. Larger blocks of this material used for filling sockets after tooth extraction don't fit well. Studies in our laboratory where we compared bovine serum albumin, collagen and plaster of Paris as binders to prevent particle scatter during implantation suggested that plaster was most useful for this purpose. In addition to preventing scatter of the particles, plaster enables the formation of implants of any size and.shape either prior to or during surgery. Studies with the PATS reaction have indicated that plaster acts as a scaffold for the incorporation of HA particles into bone in areas where the implant contacts either host bone or periosteum. The shape and integrity of the implant is maintained by the plaster component until it is replaced over a period of days by fibrovascular tissue.


Sign in / Sign up

Export Citation Format

Share Document