Theoretical and Experimental Investigation on Forming Limit for TNW700 Titanium Alloy

2014 ◽  
Vol 622-623 ◽  
pp. 340-346 ◽  
Author(s):  
Bao Sheng Liu ◽  
Wei Wu ◽  
Xiu Quan Han

Forming limit is identified to evaluate the formability of sheet metal. The in-plane limit strains of sheets are plotted in a diagram with coordinates of major strain vs. minor strain. TNW700 titanium alloy is a high temperature resistant material. The products made of TNW700 can be used in a long serving period at 500°C, short time at 700°C. In this work, the forming limit of TNW700 will be investigated in theoretical and experimental ways. The experiment to test limit strains was carried out at 750°C under different loading paths. Marciniak – Kuczynski (M-K) model was calculated with Swift constitutive equations to predict the curves of limit strains. The effect of the groove angle on forming limit is that, the same angle on both sides of centerline determines the same FLC, and the limit points shift from left side to right side. The experiment shows that, the formability of TNW700 is not excellent, and it is lower than that of TC4 and TA15 at the same condition. The comparison shows that the curve predicted by M-K model is in a good agreement with that at plane strain, however higher than that in both sides. The fractographic observation shows that the fracture mode of TNW700 is dimple rupture.

2016 ◽  
Vol 10 (3) ◽  
pp. 392-400 ◽  
Author(s):  
M. Ramulu ◽  
◽  
Vara Isvilanonda ◽  
Rishi Pahuja ◽  
Mohamed Hashish ◽  
...  

High temperature Fiber Metal Laminate – Titanium/Graphite (Ti/Gr) is an advanced material system, developed to meet the high temperature requirements in aerospace applications. High specific strength and stiffness of composite core along with its protection from aggressive environment by tough titanium alloy sheets qualify FMLs for a promising alternative material where metallic and composites overcome each other's limitations. However, industrial employability of this three phase system is often limited by the machining challenges posed by the difference in material removal mechanisms of Titanium alloy, PIXA thermoplastic polyimide resin and graphite fibers. An experimental investigation was conducted to evaluate the machinability of 1 mm thick Ti/Gr laminate sheets through Abrasive Waterjet (AWJ) machining process in terms of kerf characteristics and material removal rate. The parametric influence of AWJ operating variables on machining performance was studied by systematically measuring operating variables (traverse speed and Abrasive flow rate) using fully crossed Design of experiment (DOE) scheme, and statistically analyzing using ANOVA (Analysis of variance) technique. Empirical models were developed to quantify these effects and predict the influence of process parameters on material removal rate, kerf taper, entry damage width and overcut in straight cutting of Ti/Gr sheets.


1976 ◽  
Vol 43 (4) ◽  
pp. 639-644 ◽  
Author(s):  
A. R. S. Ponter ◽  
M. H. Walter

Rapid cycling solutions are presented for a simple two-bar structure subjected to variable temperature. Three constitutive relationships are considered, nonlinear viscous, strain-hardening and Bailey-Orowan models which describe differing aspects of the creep of metals. It is shown that the solutions for the viscous and strain-hardening relations are essentially similar and possess distinct reference stress histories over ranges of the governing parameters. The presence of recovery in the Bailey-Orowan model causes a distinctly different mode of behavior. Experimental results on a simulated two-bar structure are presented, under conditions where the strain-hardening hypothesis may be expected to be most relevant. Good agreement is obtained between theory and experiment although the presence of anelastic creep, with a short time scale, tends to reduce the effective thermoelastic stresses.


Alloy Digest ◽  
1960 ◽  
Vol 9 (5) ◽  

Abstract MST 881 is a titanium alloy capable of holding properties to 1100 F. It extends the useful temperature range of titanium alloys to 1100 F for long-time applications and to 1600 F for short-time applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-25. Producer or source: Mallory-Sharon Metals Company.


Author(s):  
B. R. Mahesh ◽  
J. Satheesh

Formability of a material is found to be one of the important characteristic of a sheet metal to know the variation of the major and minor strain of a sheet metal, using this value one can predict the forming limit diagram of sheet metal, forming limit diagram gives the behavior of sheet metals under various loads and also helps in the prediction of breakage or necking of the material under specific load and velocity of the punch. Current study is mainly focused on obtaining the forming limit diagram of two different aluminium alloys like Al-5052 H32 and Al-6063 T5 using numerical analysis software PAMSTAMP and the results obtained are validated by conducting experiments, there is a good agreement of results between the experimental and numerical values. The forming limit diagram of the mentioned alloys helps in manufacturing of automobile and electric vehicle parts.


2002 ◽  
Vol 715 ◽  
Author(s):  
J. Krc ◽  
M. Zeman ◽  
O. Kluth ◽  
F. Smole ◽  
M. Topic

AbstractThe descriptive scattering parameters, haze and angular distribution functions of textured ZnO:Al transparent conductive oxides with different surface roughness are measured. An approach to determine the scattering parameters of all internal interfaces in p-i-n a-Si:H solar cells deposited on the glass/ZnO:Al substrates is presented. Using the determined scattering parameters as the input parameters of the optical model, a good agreement between the measured and simulated quantum efficiencies of the p-i-n a-Si:H solar cells with different interface roughness is achieved.


Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract Ti-5A1-4FeCr is an alpha-beta type titanium alloy recommended for airframe components. It responds to an age-hardening heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-58. Producer or source: Titanium alloy mills.


Alloy Digest ◽  
1968 ◽  
Vol 17 (3) ◽  

Abstract Ti-0.20Pd is an alpha-type titanium alloy recommended for the chemical industry applications where environments are moderately reducing, or fluctuate between oxidizing and reducing. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-56. Producer or source: Reactive Metals Corporation.


Alloy Digest ◽  
1968 ◽  
Vol 17 (2) ◽  

Abstract Titanium IA1-8V-5Fe is an all beta type titanium alloy recommended for high temperature fasteners. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-55. Producer or source: Reactive Metals Corporation.


Alloy Digest ◽  
1966 ◽  
Vol 15 (11) ◽  

Abstract Ti-679 is a titanium high temperature alloy having an excellent combination of short-time strength, creep strength and stability to 900 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ti-48. Producer or source: Titanium Metals Corporation of America.


Alloy Digest ◽  
1963 ◽  
Vol 12 (6) ◽  

Abstract Republic RS-110A is a titanium alloy containing manganese as its principle alloying element. The alloy is a medium strength, highly formable sheet alloy which has been used extensively as an aircraft structural material. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-35. Producer or source: Republic Steel Corporation, Titanium Division.


Sign in / Sign up

Export Citation Format

Share Document