Design of Numerical Simulations of Linear Friction Welding Processes: Issues and Difficulties

2015 ◽  
Vol 639 ◽  
pp. 451-458 ◽  
Author(s):  
Antonino Ducato ◽  
Davide Campanella ◽  
Gianluca Buffa ◽  
Livan Fratini

In this paper, a critical analysis of the technical difficulties and numerical issues in running simulations of linear friction welding processes is carried out. The focus of the paper is the comparison of different modeling strategies of a numerical analysis for the LFW process of Ti-6Al-4V titanium alloy, for which the thermal aspect strongly influences the mechanical behavior due to the phase transformation, taking place over a definite range of temperature. A 3D simulation campaign, conducted using the FEA code DEFORMTM, was considered in order to show advantages and disadvantages of each approach, including the most critic limitations and complexity in a correct simulation design using two deformable objects.

2011 ◽  
Vol 314-316 ◽  
pp. 979-983
Author(s):  
Tie Jun Ma ◽  
Xi Chen ◽  
Wen Ya Li

The orthogonal experimental design was conducted for linear friction welding of Ti-6Al-4V titanium alloy (TC4). The friction power and joint temperature were collected during the welding process. The influence of process parameters on the axial shortening was analyzed. The suitable process parameters were determined by investigating the joint appearance, the requirement of axial shortening and welding variables during welding. The results provide important reference for establishing process parameters of linear friction welding in practice.


2012 ◽  
Vol 60 (2) ◽  
pp. 770-780 ◽  
Author(s):  
E. Dalgaard ◽  
P. Wanjara ◽  
J. Gholipour ◽  
X. Cao ◽  
J.J. Jonas

2011 ◽  
Vol 278 ◽  
pp. 446-453 ◽  
Author(s):  
Oyedele T. Ola ◽  
Olanrewaju A. Ojo ◽  
Priti Wanjara ◽  
Mahesh C. Chaturvedi

Inconel 738 (IN 738), like other precipitation-hardened nickel-base superalloys that contain a substantial amount of Al and Ti, is very difficult to weld due to its high susceptibility to heat-affected zone (HAZ) cracking during conventional fusion welding processes. The cause of this cracking, which is usually intergranular in nature, has been attributed to the liquation of various phases in the alloy, subsequent wetting of the grain boundaries by the liquid and decohesion across one of the solid-liquid interfaces due to on-cooling tensile stresses. In the present work, crack-free welding of the alloy was obtained by linear friction welding (LFW), notwithstanding the high susceptibility of the material to HAZ cracking. Gleeble thermomechanical simulation of the LFW process was carefully performed to study the microstructural response of IN 738 to the welding thermal cycle. Correlation between the simulated microstructure and that of the weldments was obtained, in that, a significant grain boundary liquation was observed in both the simulated specimens and actual weldments due to non-equilibrium reaction of second phase particles, including the strengthening gamma prime phase. These results show that in contrast to the general assumption of LFW being an exclusively solid-state joining process, intergranular liquation is possible during LFW. However, despite a significant occurrence of liquation in the alloy, no HAZ cracking was observed, which can be partly related to the nature of the imposed stress during LFW


2013 ◽  
Vol 328 ◽  
pp. 981-984
Author(s):  
Z.M. Liu ◽  
J. Wang ◽  
J.L. Pan

In this paper, A 3D finite-elements model of titanium alloy TC4 of linear friction welding is developed based on the solution of several key techniques, such as contact boundary condition treating, material properties definition, meshing technology, etc. The temperature field and the temperature gradient of workpiece are showed in results. The temperature at the interface was quickly increased to near 1000°C at 1s, and then reached a quasi-steady and the stable temperature of interface maintained about 1100°C until welding finished.


2015 ◽  
Vol 639 ◽  
pp. 485-491 ◽  
Author(s):  
Davide Campanella ◽  
Gianluca Buffa ◽  
Livan Fratini ◽  
Marion Merklein

Solid Bonding based welding processes allow to obtain defect free joints with low residual stress and low distortion. However, the engineering and optimization of solid bonding processes is difficult and requires a large number of time and cost consuming test trials. In this way, proper numerical models are essential tools permitting effective process design. The aim of this research was the comparison of the material process conditions during two different manufacturing processes taking advantage of the same metallurgical phenomenon, namely solid bonding. Linear Friction Welding, used to weld non-axisymmetric components and Accumulative Roll Bonding, used to increase the mechanical properties of sheet metals, were considered. Numerical models were set up, validated and used to design the process by studying the complex material behavior during the solid bonding of different aluminum alloys. An implicit approach was used for the Linear Friction Welding and Accumulative Roll Bonding processes, leading to the understanding of the main process variables influence on the field variables distribution and the occurrence of actual bonding.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 430 ◽  
Author(s):  
Xiaohong Li ◽  
Jianchao He ◽  
Yajuan Ji ◽  
Tiancang Zhang ◽  
Yanhua Zhang

In this paper, the fracture toughness of the thermo-mechanically affected zone (TMAZ) and the weld zone (WZ) of the TC17 titanium alloy linear friction welding joint was studied. The relationship between microstructure and fracture toughness of the joint, as well as the morphologies of the joint microstructure and fracture were investigated. The results indicate that after heat treatment, there was no significant difference in hardness between the WZ and the TMAZ of the joint, which was about 420 HV. However, the microstructures of the different zones of the joint were significantly different. The TMAZ was composed of coarse grains having an internal basket-shaped α phase with an uneven grain size, while the WZ was composed of relatively uniform fine grains and contained a sheet-like α phase. The fracture toughness of the TMAZ was found to be higher than that of the WZ, indicating that the microstructure of the joint had a significant impact on the fracture toughness. In addition, the fracture resistance of the TMAZ with coarser grains and uneven microstructure was better than that of the WZ with fine grains and uniform microstructure.


2018 ◽  
Vol 24 (2) ◽  
pp. 130-135 ◽  
Author(s):  
Dario Baffari ◽  
Gianluca Buffa ◽  
Davide Campanella ◽  
Livan Fratini ◽  
Fabrizio Micari

Sign in / Sign up

Export Citation Format

Share Document