Analysis of Properties of Selected Aluminium Alloys, Obtained by Twin Roll Casting Method and Subjected to Cold Rolling Process

2015 ◽  
Vol 641 ◽  
pp. 202-209
Author(s):  
Wojciech Ściężor ◽  
Andrzej Mamala ◽  
Paweł Kwaśniewski

Modern manufacturing technologies of flat cold-rolled products made of aluminium and its alloys are based on raw materials produced with the use of continuous casting technology. One of the most frequently used integrated production processes, based on continuous casting of metal, is twin roll casting method (TRC). In TRC method liquid metal flows into the area formed by two water-cooled rolls, solidifies and next is deformed (rolled) which allows to obtain strip with several millimetres thickness. Thanks to this, it is possible to eliminate hot rolling stage from the typical production technology, and directly subject obtained sheets to cold rolling process.This paper presents results of cold rolling strain dependency on the mechanical properties of tested aluminium alloys from 1XXX, 3XXX and 8XXX series, produced in the laboratory conditions with the use of TRC method. Furthermore the rolling loads and basic mechanical properties, determined in an uniaxial tensile, were examined.

2016 ◽  
Vol 877 ◽  
pp. 56-61 ◽  
Author(s):  
Shinji Kumai ◽  
Yusuke Takayama ◽  
Ryoji Nakamura ◽  
Daisuke Shimosaka ◽  
Yohei Harada ◽  
...  

A horizontal-type twin roll casting method has been popular for producing aluminum alloy strips, however, it is characterized by a relatively low productivity (1~6 m/min). In contrast, a vertical-type high-speed twin-roll casting method possesses an extremely high productivity (60~120 m/min (1~2 m/s)) and an excellent heat extraction ability. The rapid cooling effect provided significant microstructure refinement and mechanical properties improvement in various kinds of cast aluminum alloy products. Not only “product to product recycling” but also “up-grade recycling” can be achieved by making good use of these merits. Two examples of application showing the potential of vertical-type high-speed twin roll casting method are presented. (1) Several kinds of Al-Si base alloy were cast into the strips. Not only strength and toughness but also formability was increased in the twin roll cast products. In particular, great improvement in deformability shows the potential of the twin-roll cast aluminum alloy products as substitutes for some wrought aluminum alloy products. (2) The vertical-type tandem twin-roll caster was able to fabricate a clad strip by single step. The A4045/A3003/A4045 aluminum alloy clad sheets produced by the twin-roll casting showed better mechanical properties than the conventional hot-roll bonded clad sheets.


2016 ◽  
Vol 61 (2) ◽  
pp. 1101-1108 ◽  
Author(s):  
A. Mamala ◽  
W. Ściężor ◽  
P. Kwaśniewski ◽  
J. Grzebinoga ◽  
R. Kowal

Abstract Twin Roll Casting technology belongs to modern, integrated method of processing aluminum and its alloys. This method includes preparation of liquid metal and its continuous casting between the rotating cylindrical crystallizers, optional homogenizing treatment, cold rolling and optional interoperation or final heat treatment. Final products of TRC method are strips with a thickness from few to several millimeters, which can be directly subjected to cold rolling process to afford a sheet. Properties of final product are limited by the material’s condition, its chemical composition and also selected path of its processing technology. The paper presents research results of chemical composition and mechanical properties of strips obtained in Twin Roll Casting processing line.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1713 ◽  
Author(s):  
Yong Li ◽  
Chen He ◽  
Jiadong Li ◽  
Zhaodong Wang ◽  
Di Wu ◽  
...  

The main purpose of this present study was to investigate the different processing conditions on the microstructure, segregation behavior of alloying elements, and mechanical properties of Al−Mg−Si alloy twin-roll cast slab prepared using a novel twin-roll casting technology. The simulation of temperature field, distribution of alloying elements, tensile properties, hardness, and conductivity were examined by a Leica optical microscope, scanning electron microscopy, energy dispersion spectroscopy, electron probe microanalysis, and tensile tests. The results indicated that when the traditional twin-roll casting method was used to produce aluminum alloy strip, there are obvious centerline segregation defects due to the deep crystallization front depth and symmetrical solidification characteristics. When the forced-cooling technology was applied in the twin-roll casting process, by virtue of the changing of crystallization front depth and crystallization front shape, the segregation defects are obviously suppressed. Suggesting that this method can significantly improve the uniformity of alloying elements in the thickness direction of the twin-roll cast slab, ultimately improve the mechanical properties of AA6022 aluminum alloy.


2018 ◽  
Vol 918 ◽  
pp. 48-53 ◽  
Author(s):  
Olexandr Grydin ◽  
Mykhailo Stolbchenko ◽  
Maria Bauer ◽  
Mirko Schaper

The industrial application of high-alloyed Al-Mg-Si alloys for the production of thin strips by means of twin-roll casting is limited due to the structural inhomogeneity and segregation formation. To reach the highest mechanical properties of the finished product, a direct influence on the strip formation conditions during the twin-roll casting can be applied. Analogous to the asymmetric rolling process, additional shear stresses were created in the strip forming zone by using different circumferential velocities and torques of the caster rolls. To provide the asymmetric process conditions, only one caster roll was left driven and the second one was left idling during the casting process. The microstructure and the mechanical properties of the strips in the as-cast state as well as after the homogenization and subsequent age-hardening were analyzed. A comparison of the test results showed a positive influence of the asymmetry conditions on the strips’ properties.


2011 ◽  
Vol 299-300 ◽  
pp. 368-371 ◽  
Author(s):  
Yan Dong Yu ◽  
Peng Jiang ◽  
Chao Li ◽  
Kai Lin

AZ31 alloy sheets were produced by twin-roll casting (TRC) and sequential hot rolling. Uniaxial tensile tests were used to evaluate the deformation properties of the AZ31 alloy at a strain rate of 7×10-4s-1 and a temperature range from room temperature to 400°C. The microstructure evolution and fracture behaviour were observed by optical microscopy and scanning electronic microscope. The results show that the elongation of the AZ31 alloy increases with increasing temperature at a strain rate of 7×10-4s-1. The AZ31 alloy begins to exhibit superplasticity at 300°C. The elongation of 497.8% is achieved at 400°C. The deformation of the AZ31 alloy at low temperature is controlled by dislocation motion, and with increasing temperature (above 300°C), grain boundary sliding (GBS) begins to play a dominant role during superplastic deformation.


Sign in / Sign up

Export Citation Format

Share Document