A 3D All-Solid-State Thin Film Microbattery with Inverted Pyramid Arrays

2015 ◽  
Vol 645-646 ◽  
pp. 1170-1174
Author(s):  
Jie Lin ◽  
Jian Lai Guo ◽  
Chang Liu ◽  
Hang Guo

A 3D all-solid-state thin film lithium-ion microbattery (TFLM) with inverted pyramid arrays is fabricated by microfabrication technology. Compared with 2D TFLMs, the effective area of this 3D TFLM increases more than 30%. The 3D TFLM prepared by magnetron sputtering is composed of LiCoO2 cathode, LiPON solid electrolyte, and copper doped SnOx anode. The 3D TFLM is tested by electrochemical measurements, and the results show that it has reliable capacity and excellent performance.

2013 ◽  
Vol 27 (22) ◽  
pp. 1350156 ◽  
Author(s):  
R. J. ZHU ◽  
Y. REN ◽  
L. Q. GENG ◽  
T. CHEN ◽  
L. X. LI ◽  
...  

Amorphous V 2 O 5, LiPON and Li 2 Mn 2 O 4 thin films were fabricated by RF magnetron sputtering methods and the morphology of thin films were characterized by scanning electron microscopy. Then with these three materials deposited as the anode, solid electrolyte, cathode, and vanadium as current collector, a rocking-chair type of all-solid-state thin-film-type Lithium-ion rechargeable battery was prepared by using the same sputtering parameters on stainless steel substrates. Electrochemical studies show that the thin film battery has a good charge–discharge characteristic in the voltage range of 0.3–3.5 V, and after 30 cycles the cell performance turned to become stabilized with the charge capacity of 9 μAh/cm2, and capacity loss of single-cycle of about 0.2%. At the same time, due to electronic conductivity of the electrolyte film, self-discharge may exist, resulting in approximately 96.6% Coulombic efficiency.


2021 ◽  
Vol 50 (5) ◽  
pp. 333-338
Author(s):  
A. S. Rudy ◽  
A. A. Mironenko ◽  
V. V. Naumov ◽  
I. S. Fedorov ◽  
A. M. Skundin ◽  
...  

2018 ◽  
Vol 53 ◽  
pp. 01008
Author(s):  
Feihu Tan ◽  
XiaoPing Liang ◽  
Feng Wei ◽  
Jun Du

The amorphous LiPON thin film was obtained by using the crystalline Li3PO4 target and the RF magnetron sputtering method at a N2 working pressure of 1 Pa. and then the morphology and composition of LiPON thin films are analysed by SEM and EDS. SEM shows that the film was compact and smooth, while EDS shows that the content of N in LiPON thin film was about 17.47%. The electrochemical properties of Pt/LiPON/Pt were analysed by EIS, and the ionic conductivity of LiPON thin films was 3.8×10-7 S/cm. By using the hard mask in the magnetron sputtering process, the all-solid-state thin film battery with Si/Ti/Pt/LiCoO2/LiPON/Li4Ti5O12/Pt structure was prepared, and its electrical properties were studied. As for this thin film battery, the open circuit voltage was 1.9 V and the first discharge specific capacity was 34.7 μAh/cm2·μm at a current density of 5 μA/cm-2, indicating that is promising in all-solidstate thin film batteries.


Sign in / Sign up

Export Citation Format

Share Document