scholarly journals Experimental Comparison of the MIG and Friction Stir Welding Processes for AA 6005 Aluminium Alloy

2015 ◽  
Vol 651-653 ◽  
pp. 1480-1486 ◽  
Author(s):  
Serafino Caruso ◽  
Davide Campanella ◽  
Sebastiano Candamano ◽  
Claudia Varrese ◽  
Fortunato Crea ◽  
...  

In this study, the mechanical properties of welded joints of AA 6005 aluminum alloy obtained with friction stir welding (FSW) and conventional metal inert gas welding (MIG) are studied. FSW welds were carried out on a semi-automatic milling machine. The performance of FSW and MIG welded joints were identified using tensile and bending impact tests, as far as the environmental aspects are also included in the discussion. The joints obtained with FSW and MIG processes were also investigated in their microstructure. The results indicate that, the microstructure of the friction stir weld is different from that of MIG welded joint. The weld nugget consists of small grains in FSW than those found in MIG weld. Taking into consideration the process conditions and requirements, FSW and MIG processes were also compared with each other to understand the advantages and disadvantages of the processes for welding applications of studied Al alloy. Better tensile and bending strength were obtained with FSW welded joints.

2018 ◽  
Vol 1146 ◽  
pp. 32-37 ◽  
Author(s):  
Marius Adrian Constantin ◽  
Ana Boşneag ◽  
Eduard Niţu ◽  
Lia Nicoleta Boţilă

Welding copper and its alloys is usually difficult to achieve by conventional fusion welding processes because of high thermal diffusivity of the copper, which is at least 10 times higher than most steel alloys, in addition to this, there are the well-known disadvantages of conventional fusion welding represented by necessity of using alloying elements, a shielding gas and a clean surface. To overcome these inconveniences, Friction Stir Welding (FSW), a solid state joining process that relies on frictional heating and plastic deformation, is being explored as a feasible welding process. In order to achieve an increased welding speed and a reduction in tool wear, this process is assisted by another one (TIG) which generates and adds heat to the process. The research includes two experiments for the FSW process and one experiment for tungsten inert gas assisted FSW process. The process parameters that varied were the rotational speed of the tool [rpm] and the welding speed [mm/min] while the compressive force remained constant. The purpose of this paper is to correlate the evolution of temperature, tensile strength, elongation and microscopic aspect with the linear position on the joint (local process parameters) for each experimental case and then make comparisons between them, and to identify and present the set of process parameters that has the best mechanical properties for this material.


Author(s):  
Z. Iqbal ◽  
A. N. Shuaib ◽  
F. Al-Badour ◽  
N. Merah ◽  
A. Bazoune

One of the challenges that impede the use of the relatively new friction stir welding (FSW) process in joining steels and high temperature alloys, as well as dissimilar materials, is the development of the right pin tool material that can stand the severe welding conditions of these alloys. Recent developments in FSW tool materials include tungsten rhenium (W-Re) alloys. The ductile to brittle transition temperature of pure tungsten is reduced by the addition of rhenium (Re).. The addition of Re also improve fracture toughness of the alloy. The major focus of this paper is studying the process of making a friction stir welding bead on mild steel using a proprietary W-25%Re alloy pin tool and investigating the effects of process parameters (i.e. tool rotational and welding speeds) on microstructure, microhardness as well as tool reaction loads. Grain refining of the steel microstructure was observed in all beads. Certain process conditions produced a bead with needle like microstructure with the highest values of hardness. Reaction forces were found to increase with the increase in the tool welding speed and to decrease with the increase of the tool rotational speed. Although the spectroscopic analysis of the beads confirmed the diffusion wear of the tool, the overall tool has shown excellent resistance to mechanical wear.


2021 ◽  
Vol 71 (2) ◽  
pp. 299-304
Author(s):  
Srinivasa Rao Mallipudi ◽  
Tangudu Sai Shankar ◽  
Perumalla Srikar ◽  
Uppda Bhanoji Rao ◽  
Yandra Chandrasekhar ◽  
...  

Abstract In this study, friction stir welding (FSW) and Tungsten gas welding (TIG) processes were used to weld 5 mm thick Al-4.2Mg-0.6Mn-0.4Sc-0.1Zr alloy plates. The FSwelds and TIG welds were tested for mechanical properties (hardness, ultimate tensile strength, bending strength and impact strength) by means of vicker’s hardness machine, universal testing machine and impact test machine respectively. The strength of the base material was higher, compared to the strength of the FSW and TIG welded joints. The strength of the TIG welded joint decreased, compared to the strength of the FSW welded joint. The microstructure features were also observed for base material with the aid of metallurgical microscope and compared the same with the microstructures of FSW and TIG welded joints. FSW change the material strength due to fine-grain refinement in the stir zone in Al-4.2Mg-0.6Mn-0.4Sc-0.1Zr alloy and therefore FS welded joint exhibited 91.6% joint efficiency followed by the TIG welded joint of 69.8%.


2014 ◽  
Vol 62 (4) ◽  
pp. 791-795 ◽  
Author(s):  
S. Jannet ◽  
P.K. Mathews ◽  
R. Raja

Abstract This paper compares, the mechanical properties of welded joints 6061 T6 and 5083 O aluminium alloys obtained using friction stir welding (FSW) at four rotation speeds namely 450,560,710 and 900 rpm and that by conventional fusion welding. FSW welds were carried out on a milling machine. The performance of FSW and Fusion welded joints were identified using tensile test, hardness test and microstructure. The properties of FSW and fusion welded processes were also compared with each other to understand the advantages and disadvantages of these processes for welding applications for Al alloys. It was seen that the tensile strength obtained with FSW was higher as compared to conventional fusion welding process. The width of the heat affected zone of FSW was narrower than Fusion welded joints. The results showed that FSW improved the mechanical properties of welded joints.


2013 ◽  
Vol 794 ◽  
pp. 391-412 ◽  
Author(s):  
V. Balasubramanian ◽  
A.K. Lakshminarayanan ◽  
S. Malarvizhi

The present investigation is aimed at to study the effect of four welding processes namely friction stir welding, gas tungsten arc welding, laser beam welding and electron beam welding on fatigue behavior of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. The fatigue life and fatigue crack growth behavior were evaluated using hourglass and centre cracked tension (CCT) specimens respectively. A 100 kN servo hydraulic controlled fatigue testing machine was used under constant amplitude uniaxial tensile load with stress ratio of 0.1 and frequency of 15 Hz. Fatigue properties are correlated with the tensile, impact toughness, micro hardness, microstructure, fracture surface morphology and residual stress of the welded joints. It is found that the joint fabricated by friction stir welding process showed superior fatigue life and fatigue crack growth resistance compared to other joints. This is mainly due to the synergetic effect of dual phase ferritic-martensitic microstructure, superior tensile properties and favorable residual stress, which inhibit the growth of cracks compared to other joints.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


Sign in / Sign up

Export Citation Format

Share Document