The Effect of Eccentricity of the Tool on the Surface Morphology of FSJ Joint

2015 ◽  
Vol 656-657 ◽  
pp. 387-390
Author(s):  
Yong Fang Deng ◽  
Dun Wen Zuo ◽  
Bo Song

An attempt is made here to join 2024 aluminum alloy plate by friction stir joining (FSJ) using tools with different eccentricity. Joint surface morphology was observed, and the sizes of both arc line spacing and flash were measured. Furthermore, study the effect of eccentricity of the tool on the surface topography of FSJ joint and analyze the formation of the joint surface topography. It is found that, the space trajectory of long axis of shoulder which formed by the eccentricity of the tool determine the morphology of the arc lines; the ratio between the feed speed and the rotation speed determine the arc line spacing; length of time that long axis of shoulder squeeze the edge of the joint line in the advancing side and the retreating side determines the size of flash in both sides of the joint line. Arc lines were regularly distributed in the joint lines and there are also regular texture structure distributed in the flash of each side. The flash in the advancing side is less than the retreating side. Increasing the amount of eccentricity, it has litter effect on the arc line spacing but will destroy the arc lines morphology in the joint surface and promote the formation of filamentous flash structure in the both sides of the joint.

2014 ◽  
Vol 1027 ◽  
pp. 183-186 ◽  
Author(s):  
Yong Fang Deng ◽  
Dun Wen Zuo ◽  
Bo Song

An attempt is made here to analyze the effect of the process parameter and shoulder of tool on the surface topography of FSJ (friction stir joining) joint. It is found that, it is a linear relationship between the feed speed and arc lines spacing, and the slope decreases as feed speed increasing. As the rotational speed increasing, the arc line spacing reduces. While FSJ processes completed at different parameters contain the same ratio between the feed speed and the rotation speed, the arc line spacing of the joint surfaces is the same. The shoulder of tool can increase the width of joint lines, refine arc lines structure, reduce the flash in the retreating side, but increase the flash in the advancing side.


2017 ◽  
Vol 68 (9) ◽  
pp. 1974-1977
Author(s):  
Silvia Izabella Pop ◽  
Dana Cristina Bratu ◽  
Violeta Valentina Merie ◽  
Mariana Pacurar ◽  
Catalin Petru Simon ◽  
...  

The objective of this study was to analyse morphological and surface topography variations of two types of mini-implants after using different chemical and physical cleaning methods and autoclaved sterilization. One hundred mini-implants from two different manufacturers were used in this study. The mini-implants from each manufacturer were divided in five groups, each consisting of ten samples: G0 new, unused, G1 ultrasonically cleaned, G2 chemically cleaned, G3 sandblasted, G4 cleaned with distilled water. SEM analyses of the mini-implants were performed. Only procedures used in samples from group G2 and G3 removed the tissue remains from the mini-implants surface.


2020 ◽  
Vol 10 (1) ◽  
pp. 408-414
Author(s):  
Nurul Muhayat ◽  
Alvian Restu Putra Utama ◽  

AbstractMechanical alloying can be carried out by a method known as friction stir processing, whereby solid Zn particles in a solution are distributed onto an aluminium alloy plate. The aim of this study was to determine the effects of a volume of Zn particles on the mechanical and physical properties of aluminium 1xxx alloy that had been subjected to friction stir processing. The specimens were plates composed of 1xxx series aluminium. A groove, measuring 12 mm in diameter, was pierced to various depths, and the Zn particles in these containers were then subjected to friction stir processing using a pin-less tool with a diameter of 15 mm. The results showed that the highest hardness was found in the uppermost layer of the workpiece, and this gradually decreased with thickness. An increase in the amount of Zn particles caused an increase in material hardness. The highest hardness of 87.1 HV in the friction stir-processed AA1100 was obtained at the highest volume of Zn compared to the hardness of 44.5 HV, which was obtained for the specimen without the addition of Zn.


2010 ◽  
Vol 15 (8) ◽  
pp. 694-698 ◽  
Author(s):  
T. Le Jolu ◽  
T. F. Morgeneyer ◽  
A. F. Gourgues-Lorenzon

Author(s):  
Debtanay Das ◽  
Swarup Bag ◽  
Sukhomay Pal ◽  
M. Ruhul Amin

Abstract Friction stir welding (FSW) is widely accepted by industry because of multiple advantages such as low-temperature process, green technology, and capable of producing good quality weld joints. Extensive research has been conducted to understand the physical process and material flow during FSW. The published works mainly discussed the effects of various process parameters on temperature distribution and microstructure formation. There are few works on the prediction of defect formation from a physics-based model. However, these models ignore chip formation or surface morphology and material loss during the FSW process. In the present work, a fully coupled 3D thermo-mechanical model is developed to predict the chip formation and surface morphology during welding. The effects of various process parameters on surface morphology are also studied using the current model. Coupled Eulerian-Lagrangian (CEL) technique is used to model the FSW process using a commercial software ABAQUS. The model is validated by comparing the results in published literature. The current model is capable of predicting the material flow out of the workpiece and thus enables the visualization of the chip formation. The developed model can extensively be used to predict the surface quality of the friction stir welded joints.


2019 ◽  
Vol 38 (2019) ◽  
pp. 525-532 ◽  
Author(s):  
Zhimin Liang ◽  
Xue Wang ◽  
Congwei Cai ◽  
Dianlong Wang

Abstract6082-T6 aluminum alloy plate with thickness of 42mm was butt welded by friction stir welding (FSW) from two sides. The microstructures of the joints exhibited different grain sizes because of unequal frictional heating and plastic flow during FSW process. The transition from the heat affected zone (HAZ) to the nugget zone (NZ) in thermos-mechanical affected zone of advancing side (AS-TMAZ) was more sudden than thermos-mechanical affected zone of retreating side (RS-TMAZ). Kissing bond (KB) defect throughout the entire FSW joint was displayed both at the grain boundary and in the interior of the grain with semi-continuous bands. KB had no direct effect on tensile properties. Vickers hardness of the FSW joint was lower than the BM because its high heat input, dissolved and coarsened precipitates and little to the grain size after FSW. Hardness distribution of double-sided welding joint showed X-shaped area softening characteristics, that is to say the lowest hardness was the junction of two welding joint of NZ and the junction of TMAZ and HAZ. The tensile fracture position occurred in the lowest hardness region of the FSW joint, and it did not occur in the KB defect position.


2007 ◽  
Vol 561-565 ◽  
pp. 279-282 ◽  
Author(s):  
Masafumi Kokubo ◽  
Shinichi Kazui ◽  
Takao Kaneuchi ◽  
Yoshimasa Takayama ◽  
Hajime Kato ◽  
...  

Microstructural characterization and temperature analysis have been performed in friction stir welding (FSW) of A383 and 5052 dissimilar aluminum alloys. Marked difference in microstructure was observed between joints with different arrangements of materials. The temperature at four points on each side of the joint line was measured during FSW in various conditions. In addition, an analytical model assumed that the work generated by the rotation of the tool led to the work for stirring materials and heat generation of the material and the tool. The temperature of the retreating side (RS) for the joint of the advancing side (AS):A383/RS:5052 was about 50K higher than that of AS, while the temperatures of AS and RS for the joint of AS:5052/RS:A383 were almost the same. The experimental temperature could be calculated reasonably by using the model with assumption of the work for stirring the material.


2018 ◽  
Vol 510 ◽  
pp. 70-79 ◽  
Author(s):  
Ruilin Lai ◽  
Xiaoqian Li ◽  
Diqiu He ◽  
Junyuan Lin ◽  
Jian Li ◽  
...  
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Jihong Wei ◽  
Yan Men ◽  
Shaorui Sun ◽  
Huilin Le ◽  
Feng Zhu

A set of systematic experimental methods, including 3D accuracy scanning and identification of discontinuous surface topography, physical model construction, and laboratory direct shear experiment under different directions and normal stresses, was proposed to research the influence of discontinuity roughness on strength and deformation of discontinuity. During physical model construction of discontinuity, three types of discontinuity and rough natural rock joint surface models were constructed and moulded. Meanwhile, many influence factors of discontinuity surface topography, such as asperity inclination angle (AIA), asperity height (AH), normal stress (NS), and shear direction (SD), were considered during the direct shear experiment. On the basis of the experimental results, it can be found that there were two types of failure modes under different loading conditions, which were named “failure by shearing through the asperities” and “failure by sliding over the asperities”. The obvious stress concentration phenomenon, climbing, and cutting effects appeared in the process of the direct shear experiment. In addition, the accurate identification of surface topography of natural rough rock joint surface was carried out using three-dimensional sensing system (3DSS) and self-programming software before and after the experiment. The subsamples with the same surface topography as the original samples were moulded using a self-developed instrument. Then, the mechanical behavior of the original samples and subsamples for the natural rough rock joint surface under different shear directions and normal stresses was studied. The results show that the shear displacement under different shear directions and normal stresses is very large before it reaches the failure state. And the residual strength of the original samples is higher than that of the subsamples. In addition, failure modes of the subsamples are main failure by shearing through the asperities due to the significant difference between peak shear strength and residual strength. The failure modes for parts of the original samples are failure by sliding over the asperities. The change ratio of area for the discontinuity after the experiment depends on surface topography, strength of heave on the surface of discontinuity, and particle size of minerals on the surface of discontinuity.


Sign in / Sign up

Export Citation Format

Share Document