Deterioration of Local Mechanical Properties of HVOF-Sprayed Stellite 6 after Exposure to High-Temperature Corrosion

2015 ◽  
Vol 662 ◽  
pp. 115-118 ◽  
Author(s):  
Zdeněk Česánek ◽  
Jan Schubert ◽  
Šárka Houdková ◽  
Olga Bláhová ◽  
Michaela Prantnerová

Coating properties determine its behavior in operation. The simulation of future operational conditions is therefore the best quality test. The evaluation during operation is usually not possible to perform, and the coatings are therefore frequently characterized by their physical or mechanical properties. This text deals with the high temperature corrosion of HVOF sprayed Stellite 6 coating and with changes of its local mechanical properties before and after the corrosion testing. High temperature corrosion is defined as a corrosion in the presence of molten salts. In this case, the mixture of salts in composition of 59% Na2(SO)4 with 34.5% KCl and 6.5% NaCl was used. Two exposure temperatures 525 °C and 575 °C were selected and the tests for both temperatures were performed in the time interval of 168h in the autoclave. The coating with salt mixture layer was analyzed using scanning electron microscopy and nanoindentation. The high temperature resistance of Stellite 6 coating was evaluated according to the changes in the coating surface and by the occurrence of individual phases formed on the coating surface during the test. Generally, it can be said that the Stellite 6 alloys deposited by HVOF technology show selective oxidation under the salt film. This fact was also proved in this study. Furthermore, the nanoindentation measurements of Stellite 6 coating were performed before and after the corrosion testing. These measurements were used to evaluate the change of local mechanical coating properties.

2018 ◽  
Vol 784 ◽  
pp. 147-152
Author(s):  
Zdeněk Česánek ◽  
Jan Schubert ◽  
Olga Bláhová

Hastelloy C-276 coating was deposited on stainless steel 1.4923 using HP/HVOF (High Pressure / High Velocity Oxygen Fuel) thermal spraying technology to increase high corrosion resistance. Possible influence of high temperature corrosion on local mechanical properties change of Hastelloy C-276 was also evaluated in this article. High temperature corrosion is corrosion in the molten salts environment. The salt mixture of 59 % Na2SO4 with 34.5 % KCl and 6.5 % NaCl was used in this study. The selected exposure temperatures were 525 °C and 575 °C and the tests for both temperatures were conducted in autoclave for the time interval of 168 h. The coating and salt mixture layer was analyzed using scanning electron microscope (SEM), EDS analysis and nanoindentor (MTS Nanoindenter XP). High temperature resistance of Hastelloy C-276 coating was evaluated based on the changes in coating surface and according to the occurrence of various phases created on the coating surface during this test. It can be assumed that Hastelloy C-276 coating deposited by HVOF technology shows selective oxidation under the salt film.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jiangtao Yu ◽  
Wenfang Weng ◽  
Kequan Yu

The influence of different cooling regimes (quenching in water and cooling in air) on the residual mechanical properties of engineered cementitious composite (ECC) subjected to high temperature up to 800°C was discussed in this paper. The ECC specimens are exposed to 100, 200, 400, 600, and 800°C with the unheated specimens for reference. Different cooling regimens had a significant influence on the mechanical properties of postfire ECC specimens. The microstructural characterization was examined before and after exposure to fire deterioration by using scanning electron microscopy (SEM). Results from the microtest well explained the mechanical properties variation of postfire specimens.


2010 ◽  
Vol 85 (7-9) ◽  
pp. 1702-1706 ◽  
Author(s):  
I.B. Kupriyanov ◽  
V.N. Kudryavtsev ◽  
L.A. Kurbatova ◽  
I.E. Lyublinski

1982 ◽  
Vol 10 (6) ◽  
pp. 286 ◽  
Author(s):  
R Horstman ◽  
KA Peters ◽  
RL Meltzer ◽  
M Bruce Vieth ◽  
RH Kane ◽  
...  

2018 ◽  
Vol 37 (6) ◽  
pp. 539-544
Author(s):  
Chengzhi Zhao ◽  
Ning Li ◽  
Yihan Zhao ◽  
Hexin Zhang

AbstractA new kind of martensitic ZG1Cr10MoWVNbN heat-resistant steel has been attracted more attentions in recent years, which is mainly applied in ultra-supercritical steam turbines. The ageing property for ZG1Cr10MoWVNbN heat-resistant steel is very important because it often serves for long-time at high-temperature environment. Herein, a long-term ageing heat treatment was conducted on ZG1Cr10MoWVNbN steel at 600 °C heat for 17,000 hours. The microstructure evolution and property variation of the ZG1Cr10MoWVNbN steel were analysed before and after ageing, and also the effect of the precipitates on the mechanical properties was studied. The result showed that strength, the plastic index and impact power of the ZG1Cr10MoWVNbN steel were gradually decreased after long-term and high-temperature ageing at 600 °C due to the changes of martensite morphology and the coarsening of M23C6 carbide precipitation phase. Furthermore, fine precipitation of matrix MX carbide can also attribute to the change of mechanical properties at high temperature.


2012 ◽  
Vol 326-328 ◽  
pp. 273-278 ◽  
Author(s):  
Agnieszka Kochmańska

This paper presents the results of research on aluminide protective coatings manufactured on hightemperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, at carburizing and oxidizing potential atmosphere. Coatings were obtained on cast steel type GXNiCrSi 3018 by slurry cementation in air atmosphere. The tests of carburizing and oxidizing were carried out. The structure of the coatings before and after carburizing and oxidizing is described in the present paper. The chemical composition, thickness and microstructure of coatings were determined. These coatings could protect equipment against hot corrosion at carburizing and oxidizing atmosphere and have thermal shocks resistance.


Sign in / Sign up

Export Citation Format

Share Document