Test and Analysis of Electric Arc Machining Characteristics of Titanium Alloy and High-Temperature Alloy

2015 ◽  
Vol 667 ◽  
pp. 123-129
Author(s):  
Hai Peng ◽  
Yang Zhai

The short electric arc machining technique is a new type of strong current processing method, which has many advantages, especially for difficult-to-machine materials, such as no cutting force, small cutting chips, easy to chip removal, high processing efficiency and so on. In this paper, the electric arc processing cutting performance of two typical difficult-to-machine materials, titanium alloy and high-temperature alloy, was studied by electric machining cutting experiment to analyze the influence of arc processing on the properties of materials. Using the designed electric arc machining system, the effect of electrical processing parameters on processing properties was discussed. Furthermore, the surface layer hardness and materials metallurgical structure were detected to study the change of material internal organization and the effects on material properties change, which provide the corresponding theoretical analysis basis for arc machining of difficult-to-machine materials. Experimental results show that the titanium alloy and high-temperature alloy have small heat affected zone and hardening layer after electric arc processing, which could meet the requirement of subsequent machining to obtain a good surface quality.

Alloy Digest ◽  
2001 ◽  
Vol 50 (8) ◽  

Abstract TIMETAL 829 is a Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si near-alpha titanium alloy that is weldable and has high strength and is a creep resistant high temperature alloy. The major application is as gas turbine engine components. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on forming and heat treating. Filing Code: TI-118. Producer or source: Timet.


2009 ◽  
Vol 416 ◽  
pp. 426-431
Author(s):  
Peng Hai ◽  
Ze Fu Bao

The problems occurring in deep hole honing are investigated for the difficult-to-cut materials such as Titanium alloy, high-temperature alloy and stainless steel,and carried out experiments and analyses to select the optimal abrasive honing stone, to improve the honing efficiency and to select rational honing process. The best honing stone types and technological process to those metallic materials have been obtained finally.


2011 ◽  
Vol 487 ◽  
pp. 34-38 ◽  
Author(s):  
Guo Giang Guo ◽  
X.H. Zheng ◽  
Z.Q. Liu ◽  
Qing Long An ◽  
Ming Chen

Experimental results of Ti-6-2-4-2S, Ti-6-4 and Ti-5-5-5-1-1 are detailed in this paper with conventional surface grinding using SiC abrasive under dry conditions. Measurements of grinding forces, surface topography and metallurgical structure of ground surface were taken to investigate the grinding mechanism of these materials. The results showed grinding force ratios to these materials were between 1.35 to 2.25 at all material remove rates, but the specific energy to Ti-5-5-5-1-1 and Ti-6-2-4-2S were little higher than Ti-6-4. Evaluation of ground surface topography indicated they were visually free of crack and burn. At the same grinding parameters, Ti-5-5-5-1-1 had the maximum depth of heat-affected zone because of its poor high temperature properties.


Alloy Digest ◽  
1992 ◽  
Vol 41 (5) ◽  

Abstract INCO ALLOY 330 is a nickel/iron/chromium austenitic alloy, not hardenable by heat treatment. It is a solid solution strengthened high-temperature alloy. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-403. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1973 ◽  
Vol 22 (1) ◽  

Abstract HASTELLOY alloy S is a nickel-base high-temperature alloy having excellent thermal stability, good high-temperature mechanical properties and excellent resistance to oxidation up to 2000 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-184. Producer or source: Stellite Division, Cabot Corporation.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 664 is a nickel-base high-temperature alloy that can be precipitation hardened because of its contents of aluminum and titanium. Vacuum melting is used in its production to provide excellent quality and reproducability. It is used for applications requiring a good combination of creep and stress-rupture properties up to about 1500 F. Typical applications are gas-turbine components, airframes and fasteners. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-269. Producer or source: Nickel alloy producers.


Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract Ti-5A1-4FeCr is an alpha-beta type titanium alloy recommended for airframe components. It responds to an age-hardening heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-58. Producer or source: Titanium alloy mills.


Alloy Digest ◽  
1968 ◽  
Vol 17 (3) ◽  

Abstract Ti-0.20Pd is an alpha-type titanium alloy recommended for the chemical industry applications where environments are moderately reducing, or fluctuate between oxidizing and reducing. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-56. Producer or source: Reactive Metals Corporation.


Alloy Digest ◽  
1968 ◽  
Vol 17 (2) ◽  

Abstract Titanium IA1-8V-5Fe is an all beta type titanium alloy recommended for high temperature fasteners. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-55. Producer or source: Reactive Metals Corporation.


Sign in / Sign up

Export Citation Format

Share Document