Possibilities of Reusing Sugar Cane Straw Ash in the Production of Alternative Binders

2015 ◽  
Vol 668 ◽  
pp. 304-311 ◽  
Author(s):  
João Cláudio Bassan de Moraes ◽  
Daniela Cintra de Araújo Queiroz ◽  
Jorge L. Akasaki ◽  
José Luiz Pinheiro Melges ◽  
M.V. Borrachero ◽  
...  

Sugar cane production is increasing in Brazil due the demand in manufacturing sugar and alcohol. During production process, several wastes are generated, such as sugar cane straw. After a burning process of this waste material, sugar cane straw ash (SCSA) is obtained, and may be used in the production of alternative binders. The aim of this paper is to assess the possibility of reuse SCSA as supplementary cementitious material in blended Portland cement mortars and as raw material in the production of alkali-activated binders. Blended Portland cement mortars were prepared using 0%, 20% and 30% of SCSA in replacement of Portland cement. For alkali-activated mortars, the activating solution is based on sodium hydroxide (NaOH) solution and different Slag/SCSA proportions in mass were assessed: 100/0, 75/25 and 50/50. Mechanical strength of mortars cured at room temperature was tested for 7 and 28 curing days. The results confirm that enhanced mechanical properties can be obtained for both alternative binders using SCSA on its composition.

2016 ◽  
Vol 124 ◽  
pp. 148-154 ◽  
Author(s):  
J.C.B. Moraes ◽  
M.M. Tashima ◽  
J.L. Akasaki ◽  
J.L.P. Melges ◽  
J. Monzó ◽  
...  

2021 ◽  
Author(s):  
João Pedro Bittencourt Batista ◽  
Maria Júlia Bassan de Moraes ◽  
Mauro Mitsuuchi Tashima ◽  
Jorge Luís Akasaki ◽  
Jordi Payá ◽  
...  

2018 ◽  
Vol 30 (6) ◽  
pp. 04018084 ◽  
Author(s):  
João Claudio Bassan de Moraes ◽  
Mauro Mitsuuchi Tashima ◽  
José Luiz Pinheiro Melges ◽  
Jorge Luís Akasaki ◽  
José Monzó ◽  
...  

2021 ◽  
Vol 25 (1) ◽  
pp. 931-943
Author(s):  
Girts Bumanis ◽  
Danute Vaiciukyniene

Abstract The search for alternative alumosilicates source for production of alkali activated materials (AAM) is intensively researched. Wide spread of natural materials such as clays and waste materials are one of potential alternatives. In this research AAM was made from local waste brick made of red clay and calcined low-carbonate illite clay precursor and its properties evaluated. Waste silica gel containing amorphous silica from fertilizer production plant was proposed as additional raw material. 6 M and 7 M NaOH alkali activation solutions were used to obtain AAM. Raw materials were characterized by X-ray diffraction, laser particle size analyser, DTA/TG. Raw illite clay was calcined at a temperature of 700 to 800 °C. Waste brick was ground similar as raw clay and powder was obtained. Replacement of red clay with silica gel from 2–50 wt.% in mixture composition was evaluated. Results indicate that the most effective activator was 6 M NaOH solution and AAM with strength up to 13 MPa was obtained. Ground brick had the highest strength results and compressive strength of AAM reached 25 MPa. Silica gel in small quantities had little effect of AAM strength while significant strength reduction was observed with the increase silica gel content. The efflorescence was observed for samples with silica gel.


Author(s):  
Eduardo Bonet-Martínez ◽  
Pedro García-Cobo ◽  
Luis Pérez-Villarejo ◽  
Eulogio Castro ◽  
Dolores Eliche-Quesada

In this research, the feasibility of using bottom ashes generated by the combustion of biomass (olive pruning and pine pruning) as a source of aluminosilicates (OPBA) has been studied, replacing the metakaolin precursor (MK) in different proportions (0, 25, 50, 75 and 100 wt. % substitution) for the synthesis of geopolymers. As alkaline activator an 8 M NaOH solution and a Na2SiO3 have been used. The geopolymers were cured 24 hours in a climatic chamber at 60 ° C in a water-saturated atmosphere, subsequently demoulded and cured at room temperature for 28 days. The results indicated that the incorporation of OPBA waste, which have 19.7 wt. % of Ca, modifies the characteristics of the products formed after alkaline activation. In general terms, the incorporation of increasing amounts of calcium-rich ashes results in geopolymers with higher bulk density. The compressive strength increases with the addition of up to 50 wt. % of OPBA with respect to the control geopolymers, contributing the composition of the residue to the acquisition of a better behaviour mechanical. The results indicate the potential use of these OPBA waste as raw material to produce unconventional cements with 28-day curing strengths greater than 10 MPa, and thermal conductivities less than 0.35 W/mK.


2018 ◽  
Vol 171 ◽  
pp. 611-621 ◽  
Author(s):  
J.C.B. Moraes ◽  
A. Font ◽  
L. Soriano ◽  
J.L. Akasaki ◽  
M.M. Tashima ◽  
...  

2019 ◽  
Vol 201 ◽  
pp. 563-570 ◽  
Author(s):  
Faris Matalkah ◽  
Talal Salem ◽  
Mamoon Shaafaey ◽  
Parviz Soroushian

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 901
Author(s):  
Eduardo Bonet-Martínez ◽  
Pedro García-Cobo ◽  
Luis Pérez-Villarejo ◽  
Eulogio Castro ◽  
Dolores Eliche-Quesada

In this research, the feasibility of using bottom ashes generated by the combustion of biomass (olive pruning and pine pruning) as a source of aluminosilicates (OPBA) has been studied, replacing the metakaolin precursor (MK) in different proportions (0, 25, 50, 75, and 100 wt.% substitution) for the synthesis of geopolymers. As alkaline activator an 8 M NaOH solution and a Na2SiO3 have been used. The geopolymers were cured 24 h in a climatic chamber at 60 °C in a water-saturated atmosphere, subsequently demoulded and cured at room temperature for 28 days. The results indicated that the incorporation of OPBA waste, which have 19.7 wt.% of Ca, modifies the characteristics of the products formed after alkaline activation. In general terms, the incorporation of increasing amounts of calcium-rich ashes results in geopolymers with higher bulk density. The compressive strength increases with the addition of up to 50 wt.% of OPBA with respect to the control geopolymers, contributing the composition of the residue to the acquisition of better mechanical behavior. The results indicate the potential use of these OPBA waste as raw material to produce unconventional cements with 28-day curing strengths greater than 10 MPa, and thermal conductivities less than 0.35 W/mK.


Sign in / Sign up

Export Citation Format

Share Document