scholarly journals Effect of Olive-Pine Bottom Ash on Properties of Geopolymers Based on Metakaolin

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 901
Author(s):  
Eduardo Bonet-Martínez ◽  
Pedro García-Cobo ◽  
Luis Pérez-Villarejo ◽  
Eulogio Castro ◽  
Dolores Eliche-Quesada

In this research, the feasibility of using bottom ashes generated by the combustion of biomass (olive pruning and pine pruning) as a source of aluminosilicates (OPBA) has been studied, replacing the metakaolin precursor (MK) in different proportions (0, 25, 50, 75, and 100 wt.% substitution) for the synthesis of geopolymers. As alkaline activator an 8 M NaOH solution and a Na2SiO3 have been used. The geopolymers were cured 24 h in a climatic chamber at 60 °C in a water-saturated atmosphere, subsequently demoulded and cured at room temperature for 28 days. The results indicated that the incorporation of OPBA waste, which have 19.7 wt.% of Ca, modifies the characteristics of the products formed after alkaline activation. In general terms, the incorporation of increasing amounts of calcium-rich ashes results in geopolymers with higher bulk density. The compressive strength increases with the addition of up to 50 wt.% of OPBA with respect to the control geopolymers, contributing the composition of the residue to the acquisition of better mechanical behavior. The results indicate the potential use of these OPBA waste as raw material to produce unconventional cements with 28-day curing strengths greater than 10 MPa, and thermal conductivities less than 0.35 W/mK.

Author(s):  
Eduardo Bonet-Martínez ◽  
Pedro García-Cobo ◽  
Luis Pérez-Villarejo ◽  
Eulogio Castro ◽  
Dolores Eliche-Quesada

In this research, the feasibility of using bottom ashes generated by the combustion of biomass (olive pruning and pine pruning) as a source of aluminosilicates (OPBA) has been studied, replacing the metakaolin precursor (MK) in different proportions (0, 25, 50, 75 and 100 wt. % substitution) for the synthesis of geopolymers. As alkaline activator an 8 M NaOH solution and a Na2SiO3 have been used. The geopolymers were cured 24 hours in a climatic chamber at 60 ° C in a water-saturated atmosphere, subsequently demoulded and cured at room temperature for 28 days. The results indicated that the incorporation of OPBA waste, which have 19.7 wt. % of Ca, modifies the characteristics of the products formed after alkaline activation. In general terms, the incorporation of increasing amounts of calcium-rich ashes results in geopolymers with higher bulk density. The compressive strength increases with the addition of up to 50 wt. % of OPBA with respect to the control geopolymers, contributing the composition of the residue to the acquisition of a better behaviour mechanical. The results indicate the potential use of these OPBA waste as raw material to produce unconventional cements with 28-day curing strengths greater than 10 MPa, and thermal conductivities less than 0.35 W/mK.


2015 ◽  
Vol 668 ◽  
pp. 304-311 ◽  
Author(s):  
João Cláudio Bassan de Moraes ◽  
Daniela Cintra de Araújo Queiroz ◽  
Jorge L. Akasaki ◽  
José Luiz Pinheiro Melges ◽  
M.V. Borrachero ◽  
...  

Sugar cane production is increasing in Brazil due the demand in manufacturing sugar and alcohol. During production process, several wastes are generated, such as sugar cane straw. After a burning process of this waste material, sugar cane straw ash (SCSA) is obtained, and may be used in the production of alternative binders. The aim of this paper is to assess the possibility of reuse SCSA as supplementary cementitious material in blended Portland cement mortars and as raw material in the production of alkali-activated binders. Blended Portland cement mortars were prepared using 0%, 20% and 30% of SCSA in replacement of Portland cement. For alkali-activated mortars, the activating solution is based on sodium hydroxide (NaOH) solution and different Slag/SCSA proportions in mass were assessed: 100/0, 75/25 and 50/50. Mechanical strength of mortars cured at room temperature was tested for 7 and 28 curing days. The results confirm that enhanced mechanical properties can be obtained for both alternative binders using SCSA on its composition.


2011 ◽  
Vol 110-116 ◽  
pp. 734-739 ◽  
Author(s):  
Mohd Mustafa Al Bakri Abdullah ◽  
H. Kamarudin ◽  
Omar A.K.A. Abdulkareem ◽  
Che Mohd Ruzaidi Ghazali ◽  
A.R. Rafiza ◽  
...  

Fly ash and a mixture of alkaline activators namely sodium silicate (Waterglass) and sodium hydroxide (NaOH) solution were used for preparing geopolymer. The aim of this research is to determine the optimum value of the alkaline activator/fly ash ratio. The effect of the oxide molar ratios of SiO2/Al2O3, water content of the alkaline activator and the Waterglass% content were studied for each Alkaline activator/fly ash ratio. The geopolymers were synthesized by the activation of fly ash with alkaline solution at three different alkaline activator/fly ash ratios which were 0.3, 0.35, and 0.4 at a specific constant ratio of waterglass/NaOH solution of 1.00. The geopolymers were cured at 70°C for 24 h and cured to room temperature. Results revealed that the alkaline activator/fly ash ratio of 0.4 has the optimum amount of alkaline liquid, which shows the highest rate of geopolymerization compared to other ratios. A high strength of 8.61 MPa was achieved with 0.4 of activator/fly ash ratio and 14% of waterglass content.


2020 ◽  
Vol 10 (7) ◽  
pp. 2203 ◽  
Author(s):  
Angela D’Elia ◽  
Daniela Pinto ◽  
Giacomo Eramo ◽  
Rocco Laviano ◽  
Angel Palomo ◽  
...  

The present study explores the effect of activating solution concentration (4, 6 and 8 M NaOH) on mechanically and thermally pre-treated carbonate-high illite clay (LCR). Pastes were prepared with an alkaline solution/clay (S/B) ratio of 0.55, which were cured at room temperature and relative humidity > 90% in a climatic chamber. At two and 28 days, compressive mechanical strength was determined, and the reaction products were characterised by X-ray Powder Diffraction analysis (XRPD), Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy - Energy Dispersive X-ray spectroscopy (SEM/EDX). Results obtained showed that the presence of reactive calcium in the starting clay induces co-precipitation of a mix of gels: An aluminium-enriched C-S-H gel (C-A-S-H) and a N-A-S-H gel, in which sodium is partially replaced by calcium (N,C)-A-S-H. Pastes prepared with higher (6 or 8 M) activator concentrations exhibit a more compact matrix than the ones prepared with 4 M NaOH. The findings show that the use of a 6 M NaOH solution yields a binder with two days compressive strength >20 MPa and 28 days strength of over 30 MPa.


2016 ◽  
Vol 841 ◽  
pp. 7-15 ◽  
Author(s):  
Himawan Tri Bayu Murti Petrus ◽  
Joshepine Hulu ◽  
Gede S.P. Dalton ◽  
Elsa Malinda ◽  
Rizal Agung Prakosa

Silica scaling is one of major problems in geothermal power plant. Silica recovery is a promising method to solve this particular problem in regard to silica utilization as geopolimer concrete. In this experimental study, bentonite was used as raw alumina source. Experiments were conducted by means observing the geopolymerization through alkaline activator ratio, raw material ratio, and temperature optimization. After mixing and casting for 24 hours, samples were cured at 80°C, 100°C, and 120°C for certain period of time and kept at room temperature for 7 days before compressive strength test. The optimum curing time and temperature gained from this experiment were 120 minutes and 100°C with compressive strength of 29.16 MPa. The development of geopolymer bond and microstructure of samples were then investigated by SEM technique. Scanning electron microscopy (SEM) analysis also showed better improvement in geopolymer layer of concrete sample with increasing curing temperature.


2013 ◽  
Vol 421 ◽  
pp. 384-389 ◽  
Author(s):  
A.M. Mustafa Al Bakri ◽  
Md Tahir Muhammad Faheem ◽  
Andrei Victor Sandhu ◽  
A. Alida ◽  
Mohd Arif Anuar Mohd Salleh ◽  
...  

Geopolymer is a new binding material produced to substitute the ordinary Portland cement (OPC) function as a binder in concrete. As we know, different types of geopolymer will have different properties. In this research, the different types of geopolymer raw materials had been studied in term of microstructure. Different type of materials which is fly ash (class F) and kaolin had been mixed with alkaline solution consist of sodium silicate and sodium hydroxide with suitable geopolymer raw material to alkaline activator and sodium silicate to sodium hydroxide ratios. The geopolymer samples with different types of raw material were then cured at a temperature 70°C for 24 hr and maintained at room temperature until the testing was conducted. After the geopolymers were aged for seven days, the testing was conducted.


2021 ◽  
Vol 11 (9) ◽  
pp. 3840 ◽  
Author(s):  
Alex Maldonado-Alameda ◽  
Jofre Mañosa ◽  
Jessica Giro-Paloma ◽  
Joan Formosa ◽  
Josep Maria Chimenos

Alkali-activated binders (AABs) stand out as a promising alternative to replace ordinary Portland cement (OPC) due to the possibility of using by-products and wastes in their manufacturing. This paper assessed the potential of weathered bottom ash (WBA) from waste-to-energy plants and PAVAL® (PV), a secondary aluminium recycling process by-product, as precursors of AABs. WBA and PV were mixed at weight ratios of 98/2, 95/5, and 90/10. A mixture of waterglass (WG) and NaOH at different concentrations (4 and 6 M) was used as the alkaline activator solution. The effects of increasing NaOH concentration and PV content were evaluated. Alkali-activated WBA/PV (AA-WBA/PV) binders were obtained. Selective chemical extractions and physicochemical characterization revealed the formation of C-S-H, C-A-S-H, and (N,C)-A-S-H gels. Increasing the NaOH concentration and PV content increased porosity and reduced compressive strength (25.63 to 12.07 MPa). The leaching potential of As and Sb from AA-WBA/PV exceeded the threshold for acceptance in landfills for non-hazardous waste.


Author(s):  
Caroline J. Sartori ◽  
Graciene S. Mota ◽  
Fábio Akira Mori ◽  
Isabel Miranda ◽  
Teresa Quilhó ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1091
Author(s):  
Eva Gerold ◽  
Stefan Luidold ◽  
Helmut Antrekowitsch

The consumption of lithium has increased dramatically in recent years. This can be primarily attributed to its use in lithium-ion batteries for the operation of hybrid and electric vehicles. Due to its specific properties, lithium will also continue to be an indispensable key component for rechargeable batteries in the next decades. An average lithium-ion battery contains 5–7% of lithium. These values indicate that used rechargeable batteries are a high-quality raw material for lithium recovery. Currently, the feasibility and reasonability of the hydrometallurgical recycling of lithium from spent lithium-ion batteries is still a field of research. This work is intended to compare the classic method of the precipitation of lithium from synthetic and real pregnant leaching liquors gained from spent lithium-ion batteries with sodium carbonate (state of the art) with alternative precipitation agents such as sodium phosphate and potassium phosphate. Furthermore, the correlation of the obtained product to the used type of phosphate is comprised. In addition, the influence of the process temperature (room temperature to boiling point), as well as the stoichiometric factor of the precipitant, is investigated in order to finally enable a statement about an efficient process, its parameter and the main dependencies.


2021 ◽  
Vol 11 (13) ◽  
pp. 5887
Author(s):  
Thandiwe Sithole ◽  
Nelson Tsotetsi ◽  
Tebogo Mashifana

Utilisation of industrial waste-based material to develop a novel binding material as an alternative to Ordinary Portland Cement (OPC) has attracted growing attention recently to reduce or eliminate the environmental footprint associated with OPC. This paper presents an experimental study on the synthesis and evaluation of alkali activated Ground granulated blast furnace slag (GGBFS) composite using a NaOH solution as an alkaline activator without addition of silicate solution. Different NaOH concentrations were used to produce varied GGBFS based alkali activated composites that were evaluated for Uncofined Compressive Strength (UCS), durability, leachability, and microstructural performance. Alkali activated GGBFS composite prepared with 15 M NaOH solution at 15% L/S ratio achieved a UCS of 61.43 MPa cured for 90 days at ambient temperatures. The microstructural results revealed the formation of zeolites, with dense and non-porous morphology. Alkali activated GGBFS based composites can be synthesized using a sole alkaline activator with potential to reduce CO2 emission. The metal leaching tests revealed that there are no potential environmental pollution threats posed by the synthesized alkali activated GGBFS composites for long-term use.


Sign in / Sign up

Export Citation Format

Share Document