The Frictional Contact Problem of a Rigid Stamp Sliding over a Graded Medium

2016 ◽  
Vol 681 ◽  
pp. 155-174 ◽  
Author(s):  
M.A. Guler ◽  
M. Ozturk ◽  
A. Kucuksucu

In this study, the contact problem for a graded elastic half-plane in frictional contact with a rigid stamp is considered. The plane contact problem is assumed to be linear elastic and the Poisson's ratio is assumed to be constant. Analytical formulation of the study includes Fourier transforms of the governing equations and boundary conditions. The resulting integral equation is solved numerically. Contact pressure, in-plane stress and the stress intensity factor at the sharp edges of the contact are evaluated and demonstrated for various stamp profiles. The results are compared with a closed form solution for homogeneous isotropic half-plane indented by rigid stamps. The effects of the nonhomogeneity parameter, coefficient of friction and stamp profiles on the contact and in-plane stresses are analyzed in detail.

1977 ◽  
Vol 55 (4) ◽  
pp. 305-324 ◽  
Author(s):  
S. Przeździecki ◽  
R. A. Hurd

An exact, closed-form solution is found for the following half-plane diffraction problem: (I) The medium surrounding the half-plane is both electrically and magnetically gyrotropic. (II) The scattering half-plane is perfectly conducting and oriented perpendicular to the distinguished axis of the medium. (III) The incident electromagnetic plane wave propagates in a direction normal to the edge of the half-plane.The formulation of the problem leads to a coupled pair of Wiener–Hopf equations. These had previously been thought insoluble by quadratures, but yield to a newly discovered technique : the Wiener–Hopf–Hilbert method. A basic feature of the problem is its two-mode character i.e. plane waves of both modes are necessary for the spectral representation of the solution. The coupling of these modes is purely due to edge diffraction, there being no reflection coupling. The solution obtained is simple in that the Fourier transforms of the field components are just algebraic functions. Properties of the solution are investigated in some special cases.


2014 ◽  
Vol 618 ◽  
pp. 203-225 ◽  
Author(s):  
Aysegul Kucuksucu ◽  
Mehmet A. Guler ◽  
Ahmet Avci

In this paper, the frictional contact problem of a homogeneous orthotropic material in contact with a wedge-shaped punch is considered. Materials can behave anisotropically depending on the nature of the processing techniques; hence it is necessary to develop an efficient method to solve the contact problems for orthotropic materials. The aim of this work is to develop a solution method for the contact mechanics problems arising from a rigid wedge-shaped punch sliding over a homogeneous orthotropic half-plane. In the formulation of the plane contact problem, it is assumed that the principal axes of orthotropy are parallel and perpendicular to the contact. Four independent engineering constants , , , are replaced by a stiffness parameter, , a stiffness ratio, a shear parameter, , and an effective Poisson’s ratio, . The corresponding mixed boundary problem is reduced to a singular integral equation using Fourier transform and solved analytically. In the parametric analysis, the effects of the material orthotropy parameters and the coefficient of friction on the contact stress distributions are investigated.


1981 ◽  
Vol 59 (3) ◽  
pp. 403-424 ◽  
Author(s):  
S. Przeździecki ◽  
R. A. Hurd

An exact, closed form solution is found for the following half plane diffraction problem. (I) The medium surrounding the half plane is gyrotropic. (II) The scattering half plane is perfectly conducting and oriented perpendicular to the distinguished axis of the medium. (III) The direction of propagation of the incident electromagnetic plane wave is arbitrary (skew) with respect to the edge of the half plane. The result presented is a generalization of a solution for the same problem with incidence normal to the edge of the half plane (two-dimensional case).The fundamental, distinctive feature of the problem is that it constitutes a boundary value problem for a system of two coupled second order partial differential equations. All previously solved electromagnetic diffraction problems reduced to boundary value problems for either one or two uncoupled second order equations. (Exception: the two-dimensional case of the present problem.) The problem is formulated in terms of the (generalized) scalar Hertz potentials and leads to a set of two coupled Wiener–Hopf equations. This set, previously thought insoluble by quadratures, yields to the Wiener–Hopf–Hilbert method.The three-dimensional solution is synthesized from appropriate solutions to two-dimensional problems. Peculiar waves of ghost potentials, which correspond to zero electromagnetic fields play an essential role in this synthesis. The problem is two-moded: that is, superpositions of both ordinary and extraordinary waves are necessary for the spectral representation of the solution. An important simplifying feature of the problem is that the coupling of the modes is purely due to edge diffraction, there being no reflection coupling. The solution is simple in that the Fourier transforms of the potentials are just algebraic functions. Basic properties of the solution are briefly discussed.


1981 ◽  
Vol 59 (12) ◽  
pp. 1879-1885 ◽  
Author(s):  
R. A. Hurd ◽  
E. Lüneburg

We consider the diffraction of a scalar plane wave by two parallel half-planes. On one half-plane the total field vanishes whilst on the other its normal derivative is zero. This is a new canonical diffraction problem and we give an exact closed-form solution to it. The problem has applications to the design of acoustic barriers.


Author(s):  
Onur Arslan

This study proposes analytical and computational methods for the solution of the sliding frictional contact problem of an anisotropic laterally graded layer loaded by an arbitrarily shaped rigid stamp. The plane-strain orthotropy prevails in the layer which is bonded to a rigid foundation. Each of four orthotropic stiffness coefficients is exponentially varied through the lateral direction of the elastic layer. The Fourier transformations of the field variables are employed in the formulation. The gradient of a displacement component on the surface is then converted to a singular integral equation of the second kind. The singular integral equation is solved by means of the Gauss–Jacobi quadrature integration techniques, a collocation method, and a recursive integration method for the Cauchy integral considering the flat and triangular stamp profiles. The finite element method solutions of the same contact problems are performed using the augmented Lagrange method which is implemented in virtue of ANSYS design parametric language. An iterative algorithm is additionally utilized for the (incomplete) triangular stamp problem to conveniently reach the solutions for predetermined contact lengths. The convergence and comparative analyses are carried out to elucidate the trustworthiness of the analytical and computational methods proposed. Moreover, the parametric analyses infer that the contact-induced damage risks can be effectively alleviated upon tuning the degree of orthotropy and the lateral heterogeneity of the elastic layer.


1984 ◽  
Vol 51 (2) ◽  
pp. 289-293 ◽  
Author(s):  
J. R. Walton

In a previous paper, the title problem was solved for a homogeneous power-law linearly viscoelastic half-plane. Such material has a constant Poisson’s ratio and a shear modulus with a power-law dependence on time. In this paper, the shear modulus is assumed also to have a power-law dependence on depth from the half-plane boundary. As in the earlier paper, only a quasi-static analysis is presented, that is, the enertial terms in the equations of motion are not retained and the indentor is assumed to slide with constant speed. The resulting boundary value problem is reduced to a generalized Abel integral equation. A simple closed-form solution is obtained from which all relevant physical parameters are easily computed.


Author(s):  
R W Hall ◽  
M D Savage

Associated with each elastohydrodynamic (EHD) lubrication problem there is a dry contact problem with the same contact zone, |x| a, surface displacement, υ(x), and pressure distribution, p(x). This paper considers the two-dimensional dry contact problem and shows how Poritsky's closed-form solution can be used to derive results of fundamental importance to EHD lubrication. In particular, it is shown that singularities in pressure and pressure gradient arise from discontinuities in dυ/dx and d2υ/dx2. In addition, with υ(x) expressed as a Fourier cosine series of the form υ(x) = Σn Bn cos nη (where x = a cos η, 0 ≤ η ≤ π), it follows that at the end points of the contact zone, Reynolds boundary conditions are natural conditions yielding straightforward conditions on the Fourier coefficients, Bn.


1985 ◽  
Vol 52 (2) ◽  
pp. 373-378 ◽  
Author(s):  
M. B. Rubin

The theory of a Cosserat point is specialized to describe the motion of a one-dimensional continuum. Attention is focused on two problems of an elastic bar. Vibration of a linear-elastic bar is considered in the first problem and static deformation of a nonlinear-elastic bar subjected to a uniform body force is considered in the second problem. A closed-form solution is derived for each problem by dividing the bar into two elements, each of which is modeled as a Cosserat point. The predictions of the two-element approximation are shown to be very accurate.


Sign in / Sign up

Export Citation Format

Share Document