Thermal Insulation Property of Nanostructured Alumina Coated Zirconia Thermal Barrier Coating

2016 ◽  
Vol 697 ◽  
pp. 377-380 ◽  
Author(s):  
Zhong Zhou Yi ◽  
Ke Shan ◽  
Feng Rui Zhai ◽  
Hong Yan Sun ◽  
Zhi Peng Xie

nanostructured Al2O3 coated ZrO2-Y2O3 thermal barrier coatings were prepared by plasma spraying method using nanostructured alumina coated 8mol%Y2O3 stabilized ZrO2 powder as starting material and the thermal insulation property was investigated as a function of the thickness of the coating. The results indicate that the structure and property of thermal barrier coating using nanoAl2O3 coated ZrO2-Y2O3 powder was superior to that of using single zirconia powder. The thermal insulation property of the thermal barrier coating increased with thickness of the coating increasing, and the advantage is more obvious with temperature increasing.

2018 ◽  
Vol 281 ◽  
pp. 558-563
Author(s):  
Zhong Zhou Yi ◽  
Min Lu ◽  
Ke Shan ◽  
Nan Li ◽  
Feng Rui Zhai ◽  
...  

The thermal barrier coating samples of different thickness with alumina coated zirconia and zirconia as coating materials were prepared on the surface of heat resistant alloy steel substrate after activation treatment with NiCoCrAlY as adhesive transition layer by plasma spraying method and spray gun quick spraying process. The bonding strength and thermal insulation property of two kinds of ceramic coating with the same thickness were compared by the test results of bonding strength, high temperature heat insulation and microstructure, and the relationship between the coating thickness and heat insulation effect were investigated. The results indicate that the structure and property of thermal barrier coating using nanoAl2O3coated ZrO2-Y2O3powder are superior to that using single zirconia powder. The thermal insulation property of the thermal barrier coating increased with the increasing of coating thickness, and the advantage is more obvious with temperature increasing.


2015 ◽  
Vol 31 (10) ◽  
pp. 1006-1010 ◽  
Author(s):  
Xiaofeng Zhang ◽  
Kesong Zhou ◽  
Wei Xu ◽  
Jinbing Song ◽  
Chunming Deng ◽  
...  

2018 ◽  
Vol 27 (7) ◽  
pp. 1064-1075 ◽  
Author(s):  
Wei-Wei Zhang ◽  
Guang-Rong Li ◽  
Qiang Zhang ◽  
Guan-Jun Yang ◽  
Guo-Wang Zhang ◽  
...  

Author(s):  
N. Mifune ◽  
Y. Harada ◽  
H. Taira ◽  
S. Mishima

Abstract Higher-temperature operation in a gas turbine has urged development of heat-resistant coatings and thermal barrier coatings. We have developed a 2CaO-SiO2-CaO-ZrO2 based thermal barrier coating. This coating should effectively prevent separation of the coating by relieving the shear stress generated due to thermal change of environment between layers with dissimilar properties. The coating was applied to stationary vanes of an actual gas turbine in a 25,000-hour test. This paper describes the results of the field test.


Author(s):  
J. Wigren ◽  
J.-F. de Vries ◽  
D. Greving

Abstract Thermal barrier coatings are used in the aerospace industry for thermal insulation in hot sections of gas turbines. Improved coating reliability is a common goal among jet engine designers. In-service failures, such as coating cracking and spallation, result in decreased engine performance and costly maintenance time. A research program was conducted to evaluate residual stresses, microstructure, and thermal shock life of thermal barrier coatings produced from different powder types and spray parameters. Sixteen coatings were ranked according to their performance relative to the other coatings in each evaluation category. Comparisons of residual stresses, powder morphology, and microstructure to thermal shock life indicate a strong correlation to thermal barrier coating performance. Results from these evaluations will aid in the selection of an optimum thermal barrier coating system for turbine engine applications.


2011 ◽  
Vol 462-463 ◽  
pp. 389-394 ◽  
Author(s):  
Wei Xu Zhang ◽  
Yong Le Sun ◽  
Tie Jun Wang

The spinel growth induces undulation of the thermal growth oxide layer and decreases the service life of plasma-sprayed thermal barrier coatings. An analytical model is introduced to investigate the effect of spinel growth on the delamination of thermal barrier coating. The analytical results show that the number per unit area and the growth rate of spinel have significant influence on the delamination of thermal barrier coating. The stiffer and thicker thermal barrier coating is more easily to delaminate from the bond coat due to the existence of spinels. The effect of spinel on the delamination cannot be neglected. How to reduce the growth rate and the number of spinel is a key problem to prolong the service life of thermal barrier coatings.


Author(s):  
Grégoire Witz ◽  
Hans-Peter Bossmann

Assessment of ex-service parts is important for the power generation industry. It gives us the opportunity to correlate part conditions to specific operating conditions like fuel used, local atmospheric conditions, operating regime, and temperature load. For assessment of thermal barrier coatings, one of the most valuable pieces of information is the local thermal condition. A method has been developed in Alstom, allowing determination of a thermal barrier coating average surface temperature after engine operation. It is based on the analysis of the phase composition of the thermal barrier coating by the acquisition of an X-ray diffraction spectrum of the coating surface, and its analysis using Rietveld refinement. The method has been validated by comparing its outcome to thermal models and base metal temperature mapping data. It is used for assessment of combustor and turbine coatings with various purposes: Determination of remnant coating life, building of lifing models, or determination of the coating degradation mechanisms under some specific operating conditions. Examples will be presented showing applications of this method.


2019 ◽  
Vol 21 (6) ◽  
pp. 987-997 ◽  
Author(s):  
Anders Thibblin ◽  
Ulf Olofsson

Thermal barrier coatings can be used to reduce the heat losses in heavy-duty diesel engines. A relatively new coating method for thermal barrier coatings is suspension plasma-spraying. Single-cylinder engine tests have been run to evaluate how heat losses to piston, cylinder head and exhausts as well as the specific fuel consumption are influenced by coating pistons with two different suspension plasma-sprayed thermal barrier coatings and one atmospheric plasma-sprayed thermal barrier coating, and comparing the results to those from an uncoated steel piston. The two suspension plasma-sprayed thermal barrier coatings showed reduced heat losses through the piston and less heat redirected to the cylinder head compared to conventional atmospheric plasma-sprayed thermal barrier coating, while one suspension plasma-sprayed coating with yttria-stabilized zirconia as top coat material showed increased exhaust temperature. However, the indicated specific fuel consumption was higher for all tested thermal barrier coatings than for an uncoated engine. The best performing thermal barrier coating with respect to indicated specific fuel consumption was a suspension plasma-sprayed coating with gadolinium zirconate as top coat material.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2044
Author(s):  
Sean Moser ◽  
K. Dean Edwards ◽  
Tobias Schoeffler ◽  
Zoran Filipi

Thermal barrier coatings (TBCs) have been investigated both experimentally and through simulation for mixing controlled combustion (MCC) concepts as a method for reducing heat transfer losses and increasing cycle efficiency, but it is still a very active research area. Early studies were inconclusive, with different groups discovering obstacles to realizing the theoretical potential. Nuanced papers have shown that coating material properties, thickness, microstructure, and surface morphology/roughness all can impact the efficacy of the thermal barrier coating and must be accounted for. Adding to the complexities, a strong spatial and temporal heat flux inhomogeneity exists for mixing controlled combustion (diesel) imposed onto the surfaces from the impinging flame jets. In support of the United States Department of Energy SuperTruck II program goal to achieve 55% brake thermal efficiency on a heavy-duty diesel engines, this study sought to develop a deeper insight into the inhomogeneous heat flux from mixing controlled combustion on thermal barrier coatings and to infer concrete guidance for designing coatings. To that end, a co-simulation approach was developed that couples high-fidelity computational fluid dynamics (CFD) modeling of in-cylinder processes and combustion, and finite element analysis (FEA) modeling of the thermal barrier-coated and metal engine components to resolve spatial and temporal thermal boundary conditions. The models interface at the surface of the combustion chamber; FEA modeling predicts the spatially resolved surface temperature profile, while CFD develops insights into the effect of the thermal barrier coating on the combustion process and the boundary conditions on the gas side. The paper demonstrates the capability of the framework to estimate cycle impacts of the temperature swing at the surface, as well as identify critical locations on the piston/thermal barrier coating that exhibit the highest charge temperature and highest heat fluxes. In addition, the FEA results include predictions of thermal stresses, thus enabling insight into factors affecting coating durability. An example of the capability of the framework is provided to illustrate its use for investigating novel coatings and provide deeper insights to guide future coating design.


Sign in / Sign up

Export Citation Format

Share Document