Effect of Internal Activation Using Porous Ceramic Aggregate on Hardness and Pore Structure of Fly Ash Cement Paste

2016 ◽  
Vol 711 ◽  
pp. 95-102 ◽  
Author(s):  
Kazuki Ootaishi ◽  
Phuong Trinh Bui ◽  
Yuko Ogawa ◽  
Kenji Kawai

The utilization of fly ash not only reduces the environmental impact but also improves some mechanical properties and durability of concrete. However, the early-age strength of fly ash concrete is sometimes lower than that of normal concrete due to the slow pozzolanic reaction of fly ash. In recent years, some researchers have suggested alkali or sulfate activation to accelerate the pozzolanic reaction. Some studies have used sodium hydroxide (NaOH) solution, while others have applied potassium sulfate (K2SO4) or sodium sulfate (Na2SO4) as activators which are effective in accelerating the pozzolanic reaction and increasing the strength at early age. On the other hand, the early-age strength of fly ash concrete is also improved by using porous ceramic aggregate (PCA) as an internal curing agent. Therefore, the present study aims at investigating the effect of an internal activating agent using PCA on hardness and pore structure of fly ash cement paste. In the experimental program, PCA immersed in two kinds of solution (K2SO4 and Na2SO4) was placed in the center of specimen with dimension of 21x21x20 mm. In addition, normal aggregate (NS) was used for reference. As a result, internal sulfate activation using PCA improved the hardness of interfacial transition zone (ITZ) between paste and PCA, and reduced the Ca(OH)2 content in cement paste with 40% replacement with fly ash significantly at the age of 1 day, but negligibly at the ages of 7 and 28 days when compared with reference specimen. K2SO4 was more effective in improving hardness of ITZ as an internal activating agent than Na2SO4. Although the total pore volumes of the fly ash cement pastes using PCA imbibing sulfate activators were not reduced at the age of 28 days, their pore volumes with diameters less than 0.05 µm were increased.

2013 ◽  
Vol 405-408 ◽  
pp. 2665-2670 ◽  
Author(s):  
Ming Jie Mao ◽  
Qiu Ning Yang ◽  
Wen Bo Zhang ◽  
Isamu Yoshitake

Fly-ash concrete used in massive concrete structure has superior advantages to reduce hydration heat. On the other hand, the fly-ash concrete has negative property of low strength development at early age because pozzolanic reaction of fly-ash activates at mature age, such as after 28 days. To investigate these characteristics of fly-ash used in concrete, the present study discusses thermal cracking possibility of fly-ash concrete by using FE analysis software. The present study employs prediction formulae proposed by Zhang and Japanese design code in the simulations. The objects in this study are normal strength concrete mixed of fly-ash up to 50% of replacement ratio to cement. The comparative investigations show that temperature effect is more significant than strength development at early age. Based on the analytical study, high volume fly-ash concretes of 30-50% of the replacement ratio can be concluded as effective and useful materials to reduce the cracking possibility in massive concrete structures. Keywords-Fly-ash concrete; Early Age, Prediction Formulae for Strength; Thermal Stress Analysis


Author(s):  
Yoshitaka Ishikawa

In this study, outside exposure tests of fly ash concrete were started in 2009 at various places in Japan in order to assess the effect of the differences of the exposure environment on the variation of long term durability of fly ash concrete and the degree of pozzolanic reaction of fly ash. This paper shows the results of durability monitoring over seven years from the start of exposure testing and the degree of pozzolanic reaction after seven years. The durability of fly ash concrete is improved due to pore structure complicated by the pozzolanic reaction. The degree of pozzolanic reaction of fly ash in concrete exposed under any conditions ends up being the same when enough time has elapsed, such as seven years, regardless of differences in exposure conditions.


2014 ◽  
Vol 584-586 ◽  
pp. 894-898
Author(s):  
Ping Zhang ◽  
Guan Guo Liu ◽  
Chao Ming Pang ◽  
Bing Du ◽  
Hong Gen Qin

The X ray computed tomography (X-CT) was applied to test the cracking resistance of cement paste, and the hydration process was monitored to study the effect of fly ash on the early age cracking performance. The results showed that the hydration heat reduced with the increase of fly ash under the same water-cement ratio. Within 24h, the porosity increased with time. The addition of fly ash increased the proportion of large holes and then changed the internal stress state. Using X-CT test method and by comparing the number of cracks, the sample with 20% FA was found to have the most serious cracks, whereas the sample with 30% FA had the best crack resistance.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huaqing Liu ◽  
Yan Zhang ◽  
Ruiming Tong ◽  
Zhaoqing Zhu ◽  
Yang Lv

Surface protection has been accepted as an effective way to improve the durability of concrete. In this study, nanosilica (NS) was used to improve the impermeability of cement-fly ash system and this kind of material was expected to be applied as surface protection material (SPM) for concrete. Binders composed of 70% cement and 30% fly ash (FA) were designed and nanosilica (NS, 0–4% of the binder) was added. Pore structure of the paste samples was evaluated by MIP and the fractal dimension of the pore structure was also discussed. Hydrates were investigated by XRD, SEM, and TG; the microstructure of hydrates was analyzed with SEM-EDS. The results showed that in the C-FA-NS system, NS accelerated the whole hydration of the cement-FA system. Cement hydration was accelerated by adding NS, and probably, the pozzolanic reaction of FA was slightly hastened because NS not only consumed calcium hydroxide by the pozzolanic reaction to induce the cement hydration but also acted as nucleation seed to induce the formation of C-S-H gel. NS obviously refined the pore structure, increased the complexity of the pore structure, and improved the microstructure, thereby significantly improving the impermeability of the cement-FA system. This kind of materials would be expected to be used as SPM; the interface performance between SPM and matrix, such as shrinkage and bond strength, and how to cast it onto the surface of matrix should be carefully considered.


Author(s):  
Yoichi Mimura ◽  
Vanissorn Vimonsatit ◽  
Yuki Watanabe ◽  
Itaru Horiguchi ◽  
Isamu Yoshitake

Initial cracks due to volume changes at an early age affect the durability of concrete structures, so numerical simulations are often conducted in order to predict cracks. Such prediction requires some mechanical properties of early age concrete. Tensile Young's modulus is directly dependent on the prediction of tensile stress and is one of the important input data for FEM analysis. However, direct tension test for tensile Young's modulus needs a unique apparatus and specimen, and such test is not suitable for evaluating Young's modulus at early ages of concrete. The present study compared tensile Young's modulus with compressive Young's moduli of Fly ash concrete. Compressive Young's moduli used in this study were secant modulus and initial tangent modulus. In addition, linear modulus taken from a regression line of a compressive stress-strain curve in the range of stresses less than the splitting tensile strength was also evaluated. It is found that the secant modulus, which is generally used as Young's modulus in Japan was clearly smaller than the tensile Young's modulus, which means that, tensile stresses evaluated using a secant modulus might be underestimated. On the other hand, linear modulus and initial tangent modulus were almost equal to the tensile Young's modulus. This result indicates that tensile stresses can be evaluated using Young's modulus obtained from a compression test with general apparatus and specimens.


2015 ◽  
Vol 94 ◽  
pp. 28-34 ◽  
Author(s):  
Phuong Trinh Bui ◽  
Yuko Ogawa ◽  
Kenichiro Nakarai ◽  
Kenji Kawai

Sign in / Sign up

Export Citation Format

Share Document