Shrinkage Properties of Cement-Silica Fume Blended Pastes in Early Age

2017 ◽  
Vol 726 ◽  
pp. 521-526
Author(s):  
Di Zou ◽  
Lian Zhen Xiao ◽  
Wen Chong Shi

The cement-silica fume blended pastes were prepared with different silica fume (SF) dosages of 0%, 5%, 10%, and 15% at different water-binder ratios (W/B) of 0.4 and 0.5. The autogenous shrinkage (AS) and the drying shrinkage (DS) of the paste samples in the hydration period of 7d (168 hours) were measured by a new measurement technique to explore the influence of W/B and silica fume incorporation on the shrinkage in early age. The study results can provide reference for high performance concrete mix design.It is found that ether the AS or the DS of the paste samples shows a similar pattern, and the AS development with hydration time appeared a temporary expansion period after a rapid growth, especially in the samples at a higher W/B or with a lower SF content. However, the DS development did not occur obvious expansion period.Three development trends were obtained for the factors of W/B and SF content. 1) the AS and DS of the pastes mainly occurred in early ages. The lower W/B, the shorter the rapid growth periods, and the higher the shrinkage ratio of 1d to 7d. For the pastes with W/B of 0.4, the AS grew rapidly in 1d and the DS grew rapidly in the first 10h, and the AS value in 1d reached to 63.6% of 7d, and the DS value reached to 62.1% of 7d in the paste with SF of 10%. For the pastes with W/B of 0.5, the rapid growth periods of the AS and DS respectively extended to 30~33h and 12h, and the AS value in 1d reached to 60.0% of 7d, and the DS value reached to 57.2% of 7d in the paste with SF of 10%. 2) The lower W/B, the higher the shrinkage ratio of the AS to the DS. When the SF dosage is 10%, the ratio of the AS value to the DS value of 7d is 21.66%~21.15% for W/B of 0.4, and only 6.06%~5.78% for the W/B of 0.5. 3) the higher SF content results in the higher AS in cement-SF blended pastes. For the pastes with W/B of 0.4, the ratio of the AS to the DS increased from 6.98% to 30.16% with the increase of content of SF from 5% to 15% in 1d, from 15.1% to 28.19% in 3d, from 16.78% to 26.16% in 7d.

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3680 ◽  
Author(s):  
Yang Yang ◽  
Linhao Ma ◽  
Jie Huang ◽  
Chunping Gu ◽  
Zhenjian Xu ◽  
...  

The early age volume deformation is the main course for the cracking of high-performance concrete (HPC). Hence, the shrinkage behavior and the restrained stress development of HPC under different restraints and curing conditions were experimentally studied in this paper. The method to separate the stress components in the total restraint stress was proposed. The total restrained stress was separated into autogenous shrinkage stress, drying shrinkage stress and thermal stress. The results showed that the developments of the free shrinkage (autogenous shrinkage and drying shrinkage) and the restrained stress were accelerated when the drying began; but the age when the drying began did not significantly influence the long-term shrinkage and restrained stress of HPC; the autogenous shrinkage stress continuously contributed to the development of the total restrained stress in HPC; the drying shrinkage stress developed very rapidly soon after the drying began; and the thermal stress was generated when the temperature dropped. The thermal stress was predominant at the early age, but the contributions of the three stresses to the total restrained stress were almost the same at the age of 56 d in this study.


2013 ◽  
Vol 457-458 ◽  
pp. 318-322 ◽  
Author(s):  
Li Xie

The influence rules of the mineral admixtures containing fly ash, ground slag and silica fume on the early-age autogenous shrinkage of high-performance concrete have been discussed in this paper. According to the research results, fly ash mixture can substantially decrease the early-age autogenous shrinkage of high-performance concrete, while the silica fume will increase the autogenous shrinkage. Meanwhile the influence of ground slag on autogenous shrinkage is related to its fineness and admixture amount. Generally, it is believed that when the fineness of the fly ash is higher than 4000cm2/g, the autogenous shrinkage will increase with the increasing admixture amount. The double admixture or multi-admixture of fly ash or ground slag is better for reducing the early-age autogenous shrinkage of concrete than the single-admixture. The early-age autogenous shrinkage of concrete occurs in distinctive linear dependence with the three types of mineral admixtures.


2009 ◽  
Vol 419-420 ◽  
pp. 1-4 ◽  
Author(s):  
Ying Wei Yun ◽  
Ii Young Jang ◽  
Seong Kyum Kim ◽  
Seung Min Park

High-performance concrete (HPC) as a promising construction material has been widely used in infrastructures and high-rise buildings etc. However, its pretty high autogenous shrinkage (AS) especially in its early age becomes one of the key problems endangering long-time durability of HPC structures. This paper carried out the early age AS research of large scaled HPC column specimens by embedded Fiber Bragg-Grating (FBG) strain sensor. Temperature compensation for FBG strain sensor by thermocouple was also attempted in this paper, and the results were reasonable and acceptable comparing with the result compensated by FBG temperature sensor. Reinforcement influence, size effect and temperature effect on HPC AS were also analyzed respectively in this paper.


2013 ◽  
Vol 438-439 ◽  
pp. 113-116
Author(s):  
Shou Zhi Zhang ◽  
Qian Tian ◽  
An Qun Lu

In order to improve the volume stability of high performance concrete, the effects of deformation behavior of high performance concrete containing CaO-based expansive agent were investigated. Concrete samples prepared without or with CaO-based expansive agent were compared through expansion under water curing at 20°C, drying shrinkage and autogenous shrinkage measurements. According to the experimental and analytical results, the new type expansive agent can control volume stability for high performance concrete. The addition of 10% CaO-based expansive agent not only built effective expansion in high performance concrete whatever under saturated condition or under sealed condition, but also substantially reduced its drying shrinkage.


2011 ◽  
Vol 466 ◽  
pp. 105-113 ◽  
Author(s):  
António Bettencourt Ribeiro ◽  
Vasco Medina ◽  
Augusto Gomes ◽  
Arlindo Gonçalves

Shrinkage Reducing Admixtures (SRA) are being used more often in concrete structures in order to better control shrinkage cracks. High-performance concrete, nowadays with large application, has more proneness to crack at very early age due to the lower W/C. In this type of concrete, autogenous shrinkage is usually more important than drying shrinkage. Autogenous shrinkage is due to the volume decrease inherent to binder hydration reactions. The rate of these reactions is influenced not only by the type of binder but also by the presence of chemical admixtures. It is recognized that SRA delay the hydration, being a secondary effect of this type of admixtures. In this work changes on the degree of hydration of cement pastes with SRA and different binders are presented, using the chemical shrinkage test.


2013 ◽  
Vol 838-841 ◽  
pp. 564-568
Author(s):  
Pan Xiu Wang

Early-age autogenous shrinkage is key problem of high performance concrete. It can cause a lot of early-age cracks in concrete structure and further endanger the permeability and durability. Adding expansion agent can control the early-age autogenous shrinkage strain and reduce the risk of early-age cracks. In this paper, the early-age autogenous shrinkage stress of concrete cube is calculated. The results show that, early-age autogenous shrinkage stress is larger than early-age tensile strength of concrete. So some cracks occur on the surface of concrete structure. By adding expansion agent, the early-age autogenous shrinkage strain and stress both decreases.


Author(s):  
Andina Sprince ◽  
Leonids Pakrastinsh

The aim of this paper was to study the behaviour of new high-performance fibre-reinforced cement composite materials (FRCC) that are reinforced with polyvinyl alcohol (PVA) fibres. The shrinkage deformations at early age, the compressive strength and modulus of elasticity of the new compositions had been determined. Test results shows that the addition of PVA fiber 1.10% and 0.55% by weight of the cement has negligible influence on concrete drying shrinkage, however, it is affect the concrete plastic and autogenous shrinkage. The results of the experiments permitted the prediction of long-term deformations of the concrete. Wider use of this material permit the construction of sustainable next generation structures with thin walls and large spans that cannot be built using the traditional concrete.


Sign in / Sign up

Export Citation Format

Share Document