Dry Sliding Wear Behavior of the Reinforced by Graphite Particle and Heat Treated of Recycled Aluminum AA6061 Based MMC Fabricated by Powder Metallurgy Method

2017 ◽  
Vol 740 ◽  
pp. 9-16
Author(s):  
Ahmed Sahib Mahdi ◽  
Mohammad Sukri Mustapa ◽  
Mahmod Abd Hakim Mohamad ◽  
Abdul Latif M. Tobi ◽  
Muhammad Irfan Ab Kadir ◽  
...  

The micro-hardness and compression of recycling aluminum alloy AA6061 were investigated as a function of the different microstructure and constituent powder metallurgy method. Five specimens were selected to investigate the compression strength and microhardness. The first, as fabricated specimen (as compacted), the second was as heat treated by quenching and aging process. Three specimens were mixed with Graphite particles as a reinforcement material. Compression strength values were tested for the specimens as fabricated and heat treated which were 195 and 300 MPa, respectively. The improvement ratio was 52% for the specimen as heat treated. On the other hand, high wear resistance was given by the specimen as heat treated, whereas, the lower wear strength was at the specimen mixed with 4.5% Graphite. These results were attributed to that the wear resistance related to the microhardness value.

2015 ◽  
Vol 830-831 ◽  
pp. 358-361 ◽  
Author(s):  
D.G. Sondur ◽  
D.M. Goudar ◽  
D.G. Mallapur ◽  
G.B. Rudrakshi

In the present investigation, microstructural characteristics and dry sliding wear behaviour of T6 heat treated conventionally cast Al-25Mg2Si-2Cu alloy have been discussed. The as cast alloy was subjected to solutionizing at 500°C for 5h and isothermal aging treatment at 190°C for different aging times. The micro structural characterization was studied using Scanning Electron Microscope with EDS analysis. The microstructure of as cast alloy consists of intermetallics of coarse block like sharp edged β-(Mg2Si), θ-(Al2Cu) and Q-(Al-Mg-Cu-Si) in the form of Chinese scripts and needles distributed randomly in the Al-matrix. The microstructure of heat treated alloy shows spheroidization of β phase and fine precipitation of θ-(Al2Cu) and Q phases. The dry sliding wear test was carried out using pin-on-disc machine. Age hardened alloy exhibits high wear resistance and minimum coefficient of friction over the entire range of applied loads and sliding velocities. Furthermore, high wear resistance was observed in the under aged condition compared to over ageing conditions.


2017 ◽  
Vol 898 ◽  
pp. 355-360
Author(s):  
Hang Li ◽  
Shi Chao Liu ◽  
Jin Chuan Jie ◽  
Ting Ju Li

Special brasses containing Mn and Si possess high wear resistance due to the dispersion of hard Mn5Si3 particles. The effect of precipitation hardening on the wear resistance of a Cu–30Zn–3Al–3Mn–0.7Si based brass alloy was investigated. Dry sliding wear test was conducted using a block-on-ring configuration. The results indicated that finely, nanoscale Mn5Si3 particles precipitated from the matrix after annealing at 800 °C for 4 h, resulting in the increase of hardness from 240 to 278 HV. Both the wear loss and friction coefficient decreased, indicating the improvement of the wear resistance. From the examination of the worn surfaces, adhesive and abrasive wear were found to be the major wear forms. The adhesion and abrasion decreased after the precipitation-hardening treatment.


2015 ◽  
Vol 788 ◽  
pp. 143-150
Author(s):  
Alexandra Gontarenko ◽  
Kai Möhwald ◽  
Todd Alexander Deißer ◽  
Hans Jurgen Maier

Thermal spraying is one of the most efficient methods to deposit hard wear resistant coatings. The coatings deposited by High-Velocity-Oxygen-Fuel spraying (HVOF) are characterized by high wear resistance and outstanding tribological characteristics. One of the most challenging tasks for tribologists is to develop surface treatments that allow for both operating the component without lubricants and at the same time minimize wear. WC-based cermets are a group of thermally sprayed coatings known to have high wear resistance under sliding friction conditions. An experimental study on the dry sliding wear behavior of WCCo HVOF-sprayed coating deposited onto a steel substrate is presented in the current paper. A pin-on-disc tribometer was used to carry out the wear tests.


2012 ◽  
Vol 433-440 ◽  
pp. 572-577
Author(s):  
Hua Chen ◽  
Hai Ying Sun ◽  
Zhan Kui Zhao ◽  
Zhi Long Chai

Fe-Ni-Mo-C-Cr system powder metallurgy in the as-sintered was investigated on pin-on-rolling wear tester for their dry sliding wear behavior. The morphology of worn surfaces and wear mechanism were analysed by SEM. Results show the hot-forging deformation quenching and tempered considerably decreased the porosity and improved wear resistance, and compare with quenching microstructure, tempered microstructure has high wear resistance and match of strength-toughness. Fe-2.0Ni-0.4Mo-0.5C-0.6Cr alloy presented best wear characteristics. SEM observations of the worn surface revealed microploughing and plastic deformation and crack were the basic dry sliding wear morphology,and oxidative wear and delamination wear are dominant wear mechanism.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4426-4431 ◽  
Author(s):  
CHANG-MIN SUH ◽  
GYE-WON CHOI ◽  
KYUNG-RYUL KIM ◽  
MOON-SIK HAN

This study investigated the effect of carbide precipitation hardening of heat-treated SK5M steel on the sliding wear resistance. The cold rolled carbon steel strip samples (J, G, and S-type) were oil quenched after tempering for optimal durations. The wear resistance was evaluated using a pin-on-disk wear test with an alumina counterface against different samples at various loads and distances with a constant running speed. The size and distribution of the precipitated carbides were observed using an image analyzer at various heat treatments. The heat-treated samples presented more dense carbide distribution in an area fraction and the decreased size of carbides. It is confirmed that the wear rate is minimum at an optimized austenitizing temperature of around 800°C. The specific wear rate indicates that the S-type sample has high wear resistance compared to that of J-Type. This is understood by stable wear behavior of S-type sample containing evenly distributed carbide precipitation.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 296 ◽  
Author(s):  
Chao Sun ◽  
Nannan Lu ◽  
Huan Liu ◽  
Xiaojun Wang ◽  
Xiaoshi Hu ◽  
...  

In this study, the dry sliding wear behaviors of SiC particle reinforced AZ91D matrix composites fabricated by stirring casting method were systematically investigated. The SiC particles in as-cast composites exhibited typical necklace-type distribution, which caused the weak interface bonding between SiC particles and matrix in particle-segregated zones. During dry sliding at higher applied loads, SiC particles were easy to debond from the matrix, which accelerated the wear rates of the composites. While at the lower load of 10 N, the presence of SiC particles improved the wear resistance. Moreover, the necklace-type distribution became more evident with the decrease of particle sizes and the increase of SiC volume fractions. Larger particles had better interface bonding with the matrix, which could delay the transition of wear mechanism from oxidation to delamination. Therefore, composites reinforced by larger SiC particles exhibited higher wear resistance. Similarly, owing to more weak interfaces in the composites with high content of SiC particles, more severe delamination occurred and the wear resistance of the composites was impaired.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1618 ◽  
Author(s):  
Zhaohuan Song ◽  
Songhao Zhao ◽  
Tao Jiang ◽  
Junjie Sun ◽  
Yingjun Wang ◽  
...  

In this work, a multiphase microstructure consisting of nanobainte, martensite, undissolved spherical carbide, and retained blocky austenite has been prepared in an Al-alloyed high carbon steel. The effect of the amount of nanobainite on the dry sliding wear behavior of the steel is studied using a pin-on-disc tester with loads ranging from 25–75 N. The results show that, there is no significant differences in specific wear rate (SWR) for samples with various amounts of nanobainite when the normal load is 25 N. While, the SWR firstly decreases and then increases with increasing the amount of nanobainite, and the optimum wear resistance is obtained for samples with 60 vol.% nanobainite, when the applied load increases to 50 and 75 N. The improved wear resistance is attributed to the peak hardness increment resulted from the transformation of retained austenite to martensite, work hardening, along with amorphization and nanocrystallization of the worn surface. In addition, the highest toughness of the samples with 60 vol.% nanobainite is also proven to play a positive role in resisting sliding wear. EDS (energy dispersion spectrum) and XRD (X-ray diffraction) examinations reveal that the predominant failure mechanism is oxidative wear.


Sign in / Sign up

Export Citation Format

Share Document