Anodic Oxidation of Carbon Fiber Surfaces: Influence of Static and Dynamic Process Conditions

2017 ◽  
Vol 742 ◽  
pp. 440-446
Author(s):  
Judith Moosburger-Will ◽  
Matthias Bauer ◽  
Fabian Schubert ◽  
Omar Cheick Jumaa ◽  
Siegfried R. Horn

We investigate the effects of static and dynamic anodic oxidation treatment on the surface chemical composition and functionality of carbon fibers. During static treatment, the electrolytic surface oxidation process is performed on a spatially fixed carbon fiber bundle, while in the dynamic process a moving, continuous carbon fiber tow is oxidized. In both treatment modes electrolytic current density and treatment time were varied. Surface chemical composition and functionality of the resulting carbon fibers were analyzed by x-ray photoelectron spectroscopy. A good agreement between the chemical composition and the functionality of fibers from static and dynamic anodic oxidation treatment is found. This suggests that results from static fiber treatment in a variable, easy to handle laboratory setup can be applied to dynamic anodic oxidation process conditions on a large scale.

2013 ◽  
Vol 341-342 ◽  
pp. 187-190
Author(s):  
Wei Zhang

Magnesium and its alloys have excellent physical and mechanical properties for a number of applications. Unfortunately, magnesium and its alloys are highly susceptible to corrosion, which greatly restricts their further application. Anodic oxidation treatment is an effective method to improve the corrosion resistance of magnesium and its alloys. In the anodic oxidation process, organic additives have significantly effects on the performance of the oxide film. This paper reviews the research progress on organic additives, in order to provide some references for the research of the electrolyte in the anodic oxidation process of magnesium and its alloys.


1994 ◽  
Vol 9 (8) ◽  
pp. 2144-2147 ◽  
Author(s):  
C.T. Ho

Brominated, anodically oxidized, and pristine p-100 carbon fiber reinforced tin-lead alloy composites were fabricated by squeeze casting. The fibers were brominated by bromine vapor for 48 h and then desorbed at 200 °C in air for 12 h. The anodic oxidation treatment of fibers involved electrochemical etching in a dilute sodium hydroxide electrolyte for 3 min, or immersing in nitric acid for 72 h. The composites containing surface-treated carbon fibers had higher tensile and interlaminar shear strength than the ones containing pristine carbon fibers. The composite containing brominated carbon fibers had better tensile strength than the other two surface treatments.


1998 ◽  
Vol 11 (1) ◽  
pp. 439-440
Author(s):  
T. Tsuji ◽  
K. Ohnaka ◽  
W. Aoki ◽  
H.R.A. Jones

Spectra of M dwarfs are rich in atomic and molecular lines. These spectra provide such basic information as Teff (or radius), log g (or mass), surface chemical composition, and something more (e.g. activity) if properly interpreted. It is recognized, however, that spectra of M dwarfs are already dimmed by the dust formed in their photospheres (Tsuji et al. 1996a) and this effect, which has been overlooked until recently, should be taken into account in any interpretation and analysis of the spectra of very low mass objects (VLMOs) including late M dwarfs and brown dwarfs.


2014 ◽  
Vol 887-888 ◽  
pp. 766-769 ◽  
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen ◽  
Chin Huang Sun ◽  
Jin Shyong Lin

This study produced a regularly arranged membrane, called anodic aluminum oxide (referred AAO), by mean of anodic oxidation treatment. The structure of AAO can be molecular self-assembly and its pore size is consistent. Also, the manufacturing process cost is low. These properties make the AAO be a nanotemplate material. This study further created a high quality of nanostructured film by electrochemical mould with the design of electrolyzer. In addition, a uniform nanothin film was grown on the aluminum surface in the stable control of current and temperature according to the conditions of different anode treatment. This film can form a nanopore array which the diameter can be controlled the size ranging from 15 nm to 400 nm. As results, the study can produce nanoporous template for various aperture by mean of anodic oxidation.


2002 ◽  
Vol 20 (7) ◽  
pp. 619-632 ◽  
Author(s):  
A.A. Ali ◽  
F.A. Al-Sagheer ◽  
M.I. Zaki

Three different modifications of manganese(IV) oxide, viz. cryptomelane, nsutite and todorokite-like, were synthesized by hydrothermal methods. The bulk chemical composition, phase composition, crystalline structure and particle morphology of the resulting materials were determined by thermogravimetry, atomic absorption spectroscopy, X-ray diffractometry, infrared spectroscopy and scanning electron microscopy. The surface chemical composition, texture and structure were assessed using X-ray photoelectron microscopy, nitrogen sorptiometry and high-resolution electron microscopy. The results highlighted the hydrothermal conditions under which such tunnel-structured modifications of manganese(IV) oxide can be successfully synthesized. Moreover, they revealed that (i) the bulk was microcrystalline, (ii) the crystallites were either fibrils (cryptomelane and nsutite) or rod-like (todorokite) with low-index exposed facets, (iii) the surface chemical composition mostly reflected that of the bulk and (iv) the surface texture was linked with high specific areas, slit-shaped mesopores associated with particle interstices and micropores which allowed surface accessibility to the bulk tunnels of the test oxides. The application of such test oxides as shape-selective oxidation catalysts appears worthy of investigation.


Sign in / Sign up

Export Citation Format

Share Document