Influence of Cr and Mn Addition and Heat Treatment on the Corrosion Behaviour of an AlSi3Mg Alloy

2017 ◽  
Vol 754 ◽  
pp. 11-14 ◽  
Author(s):  
Marialaura Tocci ◽  
Lorenzo Montesano ◽  
Annalisa Pola ◽  
Marcello Gelfi ◽  
Marina La Vecchia

In the present work, the effect of Cr and Mn addition on corrosion resistance was investigated on AlSi3Mg alloy. Potentiondynamic corrosion tests in a 3.5 wt. % NaCl solution were performed on samples in different heat-treated conditions, and corrosion current density and potential were determined by Tafel method. Brinnel hardness measurements were also carried out in order to couple corrosion resistance with mechanical properties. It was interestingly found that Cr presence enhanced mechanical properties and corrosion resistance in comparison with the base alloy.

2020 ◽  
pp. 2150001
Author(s):  
YESIM YILMAZ ◽  
HULYA DEMIROREN

Titanium and its alloys used in biomaterial applications are preferrably the cause of high-corrosion resistance properties in addition to having good mechanical properties. Commercially pure Ti (CP-Ti) (Grade 2), Ti6Al4V (Grade 5) and Ti6Al4V-ELI (Grade 23) samples are used as biomaterials exposed to 750°C and 1060°C for 1[Formula: see text]h. The samples were cooled in air after heat treatment at 750°C, the other samples were cooled in water after heat treatment at 1060°C. The free-heat treatment samples are as producted. Microstructures of heat-treated samples and non-made samples by comparison were evaluated before and after corrosion process microstructures and tensile strengths. Test solution is 0.5[Formula: see text]mol H2SO[Formula: see text][Formula: see text]mol HCl mixture. The corrosion resistance of the titanium samples was evaluated. Microstructure images were monitorized on optical and SEM microscopes. In this paper, the effect of heat treatment was determined on the microstructure, mechanical properties and corrosion resistances of the material. As a result, heat treatment is useful on corrosion resistance of alloyed samples.


Author(s):  
Vasile Hotea ◽  
◽  
Jozsef Juhasz ◽  

In this paper, the samples were heat treated by two-stage artificial aging to investigate the effect on the mechanical properties of the 7150-T77 aluminum alloy, and finally subjected eventually to the ESCO corrosion test according to ASTM G34-01 standard. The results have shown that the mechanical properties and corrosion resistance induced by cracking at alloy 7150 can be improved by two-stage customized heat treatment for a specific application in the aeronautical industry.


Author(s):  
Isiaka Oluwole Oladele ◽  
Samson Adelani Oluwagbenga ◽  
Joseph Ajibade Omotoyinbo

In this study, 8011A aluminum alloy was subjected to artificial ageing and joined by tungsten inert gas (TIG) welding process. The effect of welding process on the mechanical (hardness, tensile, impact) properties, corrosion resistance and microstructure of the artificially aged and welded joints were investigated. The sample was divided into pre weld heat treated and as received samples. The pre weld heat treated sample was subjected to solution treatment at 500 °C, soaking for 1 hour, and quench in water before artificial ageing was carried out at 180 °C with holding time of 8 hours. Both the pre heat treated and the as received samples were welded using tungsten inert gas (TIG) welding process. It was observed from the results, that the pre weld heat treatment adopted improved the mechanical properties and corrosion resistance of the weldments in some of the properties examined. In comparison with the welded samples, the hardness, tensile yield strength and corrosion resistance of the pre weld heat treated samples were significantly improved. There was an improvement of 11% in hardness, 9% in yield strength and 92 % in corrosion resistance when immersed in 3.5 wt% NaCl solution.


Author(s):  
Palanisamy Chandramohan ◽  
Raman Raghu ◽  
Balasubramanian Ravisankar

Abstract Ti-6Al-4V components were developed in different orientations (horizontal and vertical) using an additive manufacturing technique called direct metal laser sintering and heat treated under three different procedures. Anodizing (18- 22 V) the vertically built heat treated-2 specimen yields an optimum combination of mechanical properties and corrosion resistance tested in an acidic environment. The anodized (18- 22 V) heat treated-1 specimen built in horizontal orientation performed better in terms of combined mechanical properties and corrosion resistance tested in ringer solution.


2018 ◽  
Vol 926 ◽  
pp. 31-36
Author(s):  
Kyung Man Moon ◽  
Myeong Hoon Lee ◽  
Tae Sil Baek

Recently, many types of constructional steels have been often exposed to severely corrosive environments due to acid rain with increasing environmental contamination. To control corrosion problems, a painting protection method has been widely applied to numerous constructional steels on land as well as offshore. Therefore, development of anti-corrosive paint with good quality of corrosion resistance is very important from an economical perspective. In this study, four types of anti-corrosive paint were coated to test specimens, and then, were immersed in various salt solutions (0.1, 3 and 9% NaCl solution) for 11 days. Corrosion resistance of these samples by effect of osmotic pressure with various salt concentration was investigated with electrochemical methods such as measurement of corrosion potential, impedance and corrosion current density. Corrosion current density of these samples submerged in 0.1% NaCl solution exhibited highest value than those immersed in 3% and 9% NaCl solutions because water, dissolved oxygen and chloride ion etc. is easily to invade towards inner side of coating film due to increasing osmotic pressure compared to 3% and 9% NaCl solutions. However, corrosion current densities of all samples in the case of submerged in 9% NaCl solution exhibited higher values compared to 3% NaCl solution.Thus, a large amount of chloride ion dissolved in 9% NaCl solution plays a more critical role in corrosion behavior of coated steel rather than osmotic pressure. Consequently, the corrosion mechanism between coated steel and bare steel plates is different from each other because of presence of osmotic pressure between salt solution and coating film of coated steel plate. As a result, corrosion resistance of tcoated steel plate may be depend on the osmotic pressure as well as salt concentration


Sign in / Sign up

Export Citation Format

Share Document