A Novel Micro-Mechanical Model for Polycrystalline Inter-Granular and Trans-Granular Fracture

2017 ◽  
Vol 754 ◽  
pp. 177-180
Author(s):  
Vincenzo Gulizzi ◽  
Chris H. Rycroft ◽  
Ivano Benedetti

In this work, a novel grain boundary formulation for inter-and trans-granular cracking of polycrystalline materials is presented. The formulation is based on the use of boundary integral equations for anisotropic solids and has the advantage of expressing the considered problem in terms of grain boundary variables only. Inter-granular cracking occurs at the grain boundaries whereas trans-granular cracking is assumed to take place along specific cleavage planes, whose orientation depends on the crystallographic orientation of the grains. The evolution of inter-and trans-granular cracks is then governed by suitably defined cohesive laws, whose parameters characterize the behavior of the two fracture mechanisms. The results show that the model is able to capture the competition between inter-and trans-granular cracking.

2012 ◽  
Vol 04 (03) ◽  
pp. 1250012 ◽  
Author(s):  
F. TRENTACOSTE ◽  
I. BENEDETTI ◽  
M. H. ALIABADI

In this study, the influence of porosity on the elastic effective properties of polycrystalline materials is investigated using a 3D grain boundary micro mechanical model. The volume fraction of pores, their size and distribution can be varied to better simulate the response of real porous materials. The formulation is built on a boundary integral representation of the elastic problem for the grains, which are modeled as 3D linearly elastic orthotropic domains with arbitrary spatial orientation. The artificial polycrystalline morphology is represented using 3D Voronoi Tessellations. The formulation is expressed in terms of intergranular fields, namely displacements and tractions that play an important role in polycrystalline micromechanics. The continuity of the aggregate is enforced through suitable intergranular conditions. The effective material properties are obtained through material homogenization, computing the volume averages of micro-strains and stresses and taking the ensemble average over a certain number of microstructural samples. The obtained results show the capability of the model to assess the macroscopic effects of porosity.


2015 ◽  
Vol 665 ◽  
pp. 65-68
Author(s):  
Vincenzo Gulizzi ◽  
Alberto Milazzo ◽  
Ivano Benedetti

In this work, the grain-boundary cavitation in polycrystalline aggregates is investigated by means of a grain-scale model. Polycrystalline aggregates are generated using Voronoi tessellations, which have been extensively shown to retain the statistical features of real microstructures. Nucleation, thickening and sliding of cavities at grain boundaries are represented by specific cohesive laws embodying the damage parameters, whose time evolution equations are coupled to the mechanical model. The formulation is presented within the framework of a grain-boundary formulation, which only requires the discretization of the grain surfaces. Some numerical tests are presented to demonstrate the feasibility of the method.


Author(s):  
R. W. Fonda ◽  
D. E. Luzzi

The properties of polycrystalline materials are strongly dependant upon the strength of internal boundaries. Segregation of solute to the grain boundaries can adversely affect this strength. In copper alloys, segregation of either bismuth or antimony to the grain boundary will embrittle the alloy by facilitating intergranular fracture. Very small quantities of bismuth in copper have long been known to cause severe grain boundary embrittlement of the alloy. The effect of antimony is much less pronounced and is observed primarily at lower temperatures. Even though moderate amounts of antimony are fully soluble in copper, concentrations down to 0.14% can cause grain boundary embrittlement.


Sign in / Sign up

Export Citation Format

Share Document