Creep Damage Tolerance Factor λ of Selected Creep-Resistant Steels

2017 ◽  
Vol 754 ◽  
pp. 47-50
Author(s):  
Vàclav Sklenička ◽  
Květa Kuchařová ◽  
Jiří Dvořák ◽  
Marie Kvapilová ◽  
Petr Král

The creep damage tolerance factor λ as an important outcome of the continuum damage mechanics approach has been used to asses the creep fracture mode and the susceptibility of material to localized cracking at strain concentrations. In this work, using sets of our earlier published creep data of three advanced ferritic creep-resistant steels (T23 low alloy steel, P91 and P92 chromium steels) are analysed in terms of the creep damage tolerance factor λ. It was found that the value of the creep damage factor λ is not constant and depends on the creep loading conditions. The data analysis is followed by fractographic investigations, which is used to identify the creep fracture mode (s) experimentally.

2016 ◽  
Vol 258 ◽  
pp. 591-594 ◽  
Author(s):  
Vàclav Sklenička ◽  
Květa Kuchařová ◽  
Marie Kvapilová ◽  
Petr Král ◽  
Jiří Dvořák

As candidate materials for high-temperature components, most attention has been paid to improving tempered martensitic creep-resistant 9-12%Cr steels. In this work, creep damage and fracture behaviour of an advanced W-modified P92 steel (ASTM Grade P92) was investigated at 600 and 650°C. Tensile creep tests were followed by fractographic analysis of crept and broken specimens. Besides experimental investigations, the creep damage tolerance parameter λ has been used to assess the creep fracture mode. In accordance with experiments the values of λ indicate variety in the fracture mode and provide some evidence on accelerated degradation of the creep strength. The SEM investigations of creep fracture surface revealed substantial changes in microfractographic features of creep fracture. At high applied stress level, the fracture was frequently transgranular due to local loss of a stability of plastic deformation. The fracture ductility drops with decreasing applied stress, demonstrating ductile dimple (transgranular) to brittle (intergranular cavitation) transition of the fracture mode. It was suggested that both the creep deformation and fracture processes are controlled by the same processes and the rate controlling mechanism is most probably climb of intergranular mobile dislocations.


The creep rupture of circumferentially notched, circular tension bars which are subjected to constant load for long periods at constant temperature is studied both experimentally and by using a time-iterative numerical procedure which describes the formation and growth of creep damage as a field quantity. The procedure models the development of failed or cracked regions of material due to the growth and linkage of grain boundary defects. Close agreement is shown between experimental and theoretical values of the representative rupture stress, of the zones of creep damage and of the development of cracks for circular (Bridgman, Studies in large plastic flow and fracture , New York: McGraw-Hill (1952)) and British Standard notched specimens (B.S. no. 3500 (1969)). The minimum section of the circular notch is shown to be subjected to relatively uniform states of multi-axial stress and damage while the B.S. notch is shown to be subjected to non-uniform stress and damage fields in which single cracks grow through relatively undamaged material. The latter situation is shown to be analogous to the growth of a discrete crack in a lightly damaged continuum. The continuum damage mechanics theory presented here is shown to be capable of accurately predicting these extreme types of behaviour.


Author(s):  
Sahar Ghatrehsamani ◽  
Saleh Akbarzadeh

Wear coefficient and friction coefficient are two of the key parameters in the performance of any tribo-system. The main purpose of the present research is to use continuum damage mechanics to predict wear coefficient. Thus, a contact model is utilized that can be used to obtain the friction coefficient between the contacting surfaces. By applying this model to the continuum damage mechanics model, the wear coefficient between dry surfaces is predicted. One of the advantages of using this model is that the wear coefficient can be numerically predicted unlike other methods which highly rely on experimental data. In order to verify the results predicted by this model, tests were performed using pin-on-disk test rig for several ST37 samples. The results indicated that the wear coefficient increases with increasing the friction coefficient.


2015 ◽  
Vol 750 ◽  
pp. 266-271 ◽  
Author(s):  
Yu Zhou ◽  
Xue Dong Chen ◽  
Zhi Chao Fan ◽  
Yi Chun Han

The creep behavior of 2.25Cr-1Mo-0.25V ferritic steel was investigated using a set of physically-based creep damage constitutive equations. The material constants were determined according to the creep experimental data, using an efficient genetic algorithm. The user-defined subroutine for creep damage evolution was developed based on the commercial finite element software ANSYS and its user programmable features (UPFs), and the numerical simulation of the stress distribution and the damage evolution of the semi V-type notched specimen during creep were studied. The results showed that the genetic algorithm is a very efficient optimization approach for the parameter identification of the creep damage constitutive equations, and finite element simulation based on continuum damage mechanics can be used to analyze and predict the creep damage evolution under multi-axial stress states.


2011 ◽  
Vol 194-196 ◽  
pp. 919-923 ◽  
Author(s):  
Dong Fang Pan ◽  
Yun Feng Qiao ◽  
Cheng Shuai Sun ◽  
Xue Bing Liu

To propose the damage model of concrete in the freezing-thawing cycles, the reasonable dissipation function and micro plastic deformation expression have been determined based on the continuum damage mechanics. The damage variable is expressed as a function of the number of freezing-thawing cycle. The damage is defined in terms of the loss of the dynamic elastic modules and the damage model of the concrete in the freezing-thawing cycles has been presented.


2013 ◽  
Vol 744 ◽  
pp. 407-411
Author(s):  
Qi Hua Xu ◽  
Qiang Xu ◽  
Yong Xin Pan ◽  
Michael Short

This paper presents a review of creep cavitation and rupture of low Cr alloy and its weldment, particular in the heat-affected zone (HAZ). Creep damage is one of the serious problems for the high temperature industry. One of the computational approaches is continuum damage mechanics which has been developed and applied complementary to the experimental approach and assists in the safe operation. However, the existing creep damage constitutive equations are not developed specifically for low stress. Therefore, in order to form the physical bases for the development of creep damage constitutive equation, it is necessary to critically review the creep cavitation and rupture characteristics of low Cr alloy and its weldment.


Sign in / Sign up

Export Citation Format

Share Document