Beam Shear Connections

2018 ◽  
Vol 763 ◽  
pp. 207-215
Author(s):  
Raharuhi Koia ◽  
Jack Needham ◽  
Saeid Alizadeh ◽  
John Scarry ◽  
Gregory A. MacRae

Web side plate (WSP) connections consist of a WSP bolted to the web of a beam. The WSP and the beam web not lying in the same vertical plane cause a load eccentricity under shear or axial loading. However, common design practices in New Zealand do not explicitly consider the effects of this load eccentricity. Therefore, the purpose of this research paper was to investigate the effect this load eccentricity can have on the capacity of a WSP connection when it is subjected to shear loading alone. To do this, a finite element model was developed to predict the behaviour and performance of WSP connections under monotonic shear loading. Via the use of experimental data gathered from previous research into web side plate connections the performance of the model could be validated. It was shown that the finite element model could replicate the behaviour and performance of WSP connections well. Using the validated model procedure two different standard WSP connections were modelled and subjected to various parametric studies. It was found that for some typical NZ configurations the failure modes were identified to be bearing failure of the WSP or beam web and bolt tear out. The failure modes most susceptible to eccentric effects were considered to be bearing of the WSP and bolt shear failure. In general the effects of the eccentricity was considered to not be significant, however, there was one exception. The strength of the WSP connection was seen to decrease by 24% when the WSP was extended. It was concluded that the current design practices were appropriate for all WSP connections investigated except for those with extended WSPs. For extended WSP connections additional guidance was developed. Thus, considering the additional guidance in conjunction with current design practices will result in good behaviour for extended WSP connections.

2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


Author(s):  
Ying Yue ◽  
Walter Villanueva ◽  
Hongdi Wang ◽  
Dingqu Wang

Abstract Vessel penetrations are important features of both pressurized water reactors and boiling water reactors. The thermal and structural behaviour of instrumentation guide tubes (IGTs) and control rod guide tubes (CRGTs) during a severe accident is vital in the assessment of the structure integrity of the reactor pressure vessel. Penetrations may fail due to welding failure, nozzle rupture, melt-through, etc. It is thus important to assess the failure mechanisms of penetrations with sufficient details. The objective of this paper is to assess the timing and failure modes of IGTs at the lower head during a severe accident in a Nordic boiling water reactor. In this study, a three-dimensional local finite element model was established using Ansys Mechanical that includes the vessel wall, the nozzle, and the weld joint. The thermo-mechanical loads of the finite element model were based on MELCOR results of a station blackout accident (SBO) combined with a large-break loss-of-coolant accident (LBLOCA) including an external vessel cooling by water as a severe accident management strategy. Given the temperature, creep strain, elastic strain, plastic strain, stress and displacement from the ANSYS simulations, the results showed the timing and failure modes of IGTs. Failure of the IGT penetration by nozzle creep is found to be the dominant failure mode of the vessel. However, it was also found that the IGT is clamped by the flow limiter before the nozzle creep, which means that IGT ejection is unlikely.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 591
Author(s):  
Karel A. van Laarhoven ◽  
Bas A. Wols

The failure of joints plays an important role in the overall performance of mains. One of the prevalent failure modes at polyvinyl chloride (PVC) joints is the rupture of pipe or joint, which may occur due to high angular deflection of the pipe with respect to the joint, caused by differential soil settlement. The present paper reports the construction and use of a finite element model to determine the maximum angular deflection of a variety of PVC joints in different loading situations. The resulting acceptable deflections vary between 3° and 8° per side, which differs significantly from installation guidelines. The results will support drinking water companies in substantiating the prioritization of maintenance and inspection.


Author(s):  
T.C.H. Ting ◽  
H.H. Lau ◽  
M.S. Joo

Built up box section is a doubly symmetrical section in which two C-channel connected at the flange using self-drilling screw. They are generally used in the construction industry to obtain higher rigidity, when a single section is not sufficient. Despite being widely used in the construction industry, there are limited studies on built-up box section. Moreover, the current design code does not provide clear design guideline for the calculation of built-up box section. Therefore, research on the built-up box section is important. This paper presents a finite element model to predict the compressive strength and simulate the behavior of cold-formed steel built-up box section. The finite element model was developed using ABAQUS CAE/6.14. Comparison of the finite element and experimental results showed good correlation. The model well predicted the behavior of the built-up box column.


2006 ◽  
Vol 33 (4) ◽  
pp. 395-408 ◽  
Author(s):  
Bino B.S Huns ◽  
Gilbert Y Grondin ◽  
Robert G Driver

Despite the large database of test results for tension and shear block failure in gusset plates, the exact progression of the failure mechanism is not clear. Although current design equations predict the capacity of gusset plates fairly well, it is important for a design equation to not only predict the capacity reliably but also reflect the failure mode accurately. Recent experimental and numerical research has indicated that current design equations do not always predict the failure behaviour accurately. A finite element model was therefore developed to predict the sequence of events that leads to the tear-out of a block of material from a bolted gusset plate in tension. The model was developed to provide a useful tool for studying tension and shear block failure in gusset plates and other structural elements. This paper presents the development of the finite element model and procedure for prediction of tension and shear block failure in gusset plates. Making use of the finite element model, the database of test results is also expanded to include gusset plates with a larger number of transverse lines of bolts than what has been obtained experimentally. A reliability analysis is used to assess several design equations, including the equation adopted in CAN/CSA-S16-01 and a unified equation proposed recently for several types of bolted connections. From this work, a limit states design equation is proposed for gusset plates.Key words: gusset plate, limit states design, reliability, shear rupture, tension rupture, finite element analysis, failure criterion.


2010 ◽  
Vol 132 (04) ◽  
pp. 44-48
Author(s):  
Lloyd Smith ◽  
James Sherwood

This article describes the equipment and technology advances in baseball and softball games. Research efforts are currently being pursued by the authors to develop a layer-by-layer finite element model of a baseball. While work on improved ball models is ongoing, a number of significant accomplishments have been made with current models. These include comparing bat performance, describing the plastic deformation (denting) observed in metal bats, and the failure modes observed with wood bats. To simulate the bat/ball impact at game-like speeds, a durability machine is used to fire balls at a bat at speeds up to 200 mph, at the rate of 10 per minute. After a ball is shot, it falls into a trough and is loaded back into the magazine, which holds up to 36 balls. The bat-support mechanism simulates the grip and flexibility of a batter and can be programmed to rotate the bat between hits to simulate the use of hollow bats or to remain “label up” as is needed for wood bats.


2018 ◽  
Vol 53 (9) ◽  
pp. 1197-1213 ◽  
Author(s):  
Bazle Z (Gama) Haque ◽  
Molla A Ali ◽  
Raja H Ganesh ◽  
Sandeep Tamrakar ◽  
Chian F Yen ◽  
...  

Punch shear in unidirectional composites is induced by transverse shear loading that progressively perforates the laminate within a narrow shear annulus. At lower micromechanical length scales, punch shear loading creates unique micromechanical damage mechanisms dominated by transverse fiber shear failure, fiber–matrix interphase debonding and large inelastic deformation and cracking of the matrix. A new punch shear experimental method has been developed to test unidirectional S glass/DER353 epoxy composite ribbons at sub-millimeter length scale. The experimental data consist of a statistical measurement of the continuum response (load-deformation and punch shear strength) and the characterization of micromechanical damage modes. A simplified 2D micromechanical finite element model incorporating Weibull fiber strength distribution has been developed and correlated with the experimental data. The 2D micromechanical finite element model can simulate the punch shear failure of the ribbon incorporating mixed mode fiber fracture, and fiber–matrix debonding mechanisms using zero thickness cohesive elements. Results from stochastic simulations of punch shear experiments show that an equivalent 2D micromechanical finite element model can predict the micromechanical damage mechanisms and the statistical distribution of punch shear strength of the continuum with favorable correlation with the experiments. This paper presents a combined experimental and computational approach in simulating the stochastic non-linear progressive punch shear behavior of unidirectional composites for the first time in the literature.


2011 ◽  
Vol 90-93 ◽  
pp. 825-828
Author(s):  
Lei Zhao ◽  
Jian Zhong Yang ◽  
Jin Xin Zhao

The responses of the buried pipeline due to reverse fault dislocating are studied by a 3-dimension shell finite element model with equivalent boundary spring in ANSYS program. The calculating length of the model is determined by dip angle of the reverse fault: The length is 150 times pipe diameter when the angle is equal to or bigger than 45°; but the length is 240 times pipe diameter when the angle is less than 45°. The finite element model is fit for computing that dip angle is less than 80°. Results show: Failure modes of the pipes are determined by dip angle and dislocation value of the fault. When the angle is gentle and the dislocation is small, either local buckling(wrinkling) or beam buckling can be happened. The angle is equal to or bigger than 75°, local buckling and beam buckling can be happened at same time.


1995 ◽  
Vol 22 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Kazuo Tanne ◽  
Susumu Matsubara ◽  
Mamoru Sakuda

The purpose of this study was to investigate the location of the centre of resistance (CRe) for the nasomaxillary complex by the use of finite element analysis. A three-dimensional finite element model of the craniofacial complex, consisting of 2918 nodes and 1776 elements, was used for displacement analyses. Anteriorly and inferiorly directed forces of 9·8 N were applied at five different levels, parallel and perpendicular to the functional occlusal plane, respectively. For each loading condition, horizontal and vertical displacements of eight anatomic points in the complex and on the maxillary dentition were analysed. The complex exhibited an almost translatory displacement of approximately 1·0 µm in the forward direction when the horizontal force was applied at a point on the horizontal plane, passing through the superior ridge of the pterygomaxillary fissure, whereas the complex experienced clockwise or counter clockwise rotation when the forces were applied at the remaining levels. Furthermore, the downward forces produced anteriorly upward, or posteriorly upward rotation. However, the force applied at a point on the vertical plane passing through the posterior wall of the pterygomaxillary fissure, produced almost equal displacements of approximately 6·0 µm in an inferior direction for all the anatomic points. It is suggested that CRe of the nasomaxillary complex is located on the posterosuperior ridge of the pterygomaxillary fissure, registered on the median sagittal plane.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 247
Author(s):  
Jinlong Zhou ◽  
Linghua Dong ◽  
Weidong Yang

An active rotor with trailing-edge flaps is an effective approach to alleviate vibrations and noise in helicopters. In this study, a compact piezoelectric actuator is proposed to drive trailing-edge flaps. The two groups of piezoelectric stacks accommodated in the actuator operate in opposition, and double-acting output can be realized through the differential motion of these stacks. A theoretical model and a finite element model are established to predict the output capability of this actuator, and structural optimization is performed using the finite element model. A prototype is built and tested on a benchtop to assess its performance. Test results demonstrate that the actuator stiffness reaches 801 N/mm, and its output stroke is up to ± 0.27 mm when subjected to actuation voltage of 120 V. Agreement between measurements and simulations validates the accuracy of the established models. In addition, actuator outputs in failure modes are measured by canceling the supply voltage of one group of piezoelectric stacks. In this condition, the actuator can still generate acceptable outputs, and the initial position of the output end remains unchanged. Simulations and test results reveal that the proposed actuator achieves promising performance, and it is capable to be applied to a helicopter active rotor.


Sign in / Sign up

Export Citation Format

Share Document