A Study of Mechanical Property of Eggshell with Inverse Method and Finite Element Analysis

2018 ◽  
Vol 775 ◽  
pp. 542-546
Author(s):  
Jetsadaporn Priyadumkol ◽  
Chakrit Suvanjumrat

This research proposed an inverse method to calculate the mechanical property of a chicken eggshell. The optimization method had been performed to determine the simulated results of the finite element analysis in order to predict Young’s Modulus of the eggshell. To obtain an accurate mechanical property of the eggshell, the finite element analysis was verified by comparison with the experimental results. There was found that the error of the coupling calculation method between the inverse method and finite element method was less than 0.1%. Consequently, the inverse method and finite element analysis can be used to determine the mechanical property of the other eggshell types in the further work.

Author(s):  
Meisam Takalloozadeh ◽  
Krishnan Suresh

The objective of this paper is to demonstrate a topology optimization method subject to displacement and stress constraints. The method does not rely on pseudo-densities; instead it exploits the concept of topological level-set where ‘partial’ elements are avoided. Consequently: (1) the stresses are well-defined at all points within the evolving topology, and (2) the finite-element analysis is robust and efficient. Further, in the proposed method, a series of topologies of decreasing volume fractions are generated in a single optimization run. The method is illustrated through numerical experiments in 2D.


Author(s):  
Yi Dong ◽  
Feng Gao ◽  
Yi Yue ◽  
Jin Feng

This paper presents two compliant micro-manipulators with different structures. One uses 3-PRR mechanism while the other one adopts 3-RPR mechanism. Both of the two micro-manipulators have two translational degrees of freedom (DOF) and one rotational DOF. But the properties, such as workspace, of the two micro-manipulators are not the same. In this paper, the workspaces are studied and compared. First, the structural differences are presented. Then, the stiffness derivations of the two micro-manipulators are given and the workspaces are calculated considering the properties of piezoelectric (PZT) actuators. Finally the finite element analysis and prototype experiments are performed to validate the obtained results.


Author(s):  
RAJANARENDER REDDY PINGILI

Electric resistance spot welding has been extensively used for many years in the automotive and aerospace industry for joining body sheet components. Compared to other welding processes such as arc welding process, resistance spot welding is fast, easily automated and easily maintained. Accurate thermal analysis of spot welding electrode could permit critical design parameters to be identified for improved electrode life. It is a complex process where coupled interactions exist between electrical, thermal and mechanical phenomena. On the other hand, finite element method (FEM), which can deal with nonlinear behaviors and complex boundary conditions, provides a powerful tool for studying these interactions and has become the most important method for the analysis of resistance spot welding. In this study, a 2-D finite element model has been developed to predict the transient thermal behavior of spot welding electrodes. The model included heat transfer analysis, electrical field analysis and phase change during melting or solidification and temperature dependant material properties, and also their inter-dependence. The contacts at faying surface and at electrode – work interface, with temperature dependant contact resistances were modeled. Three types of electrode shapes – flat, pointed and dome nose were analyzed. Temperature distribution on each electrode shape was obtained from the finite element analysis. Maximum temperature of 2876 ºC was observed in dome nose electrode in 0.2 seconds of welding time. Dome nose electrode requires a minimum weld time of all the other electrode shapes to get the required nugget size, resulting in the least power consumption. Nugget size was predicted for each electrode shape. Experimental results obtained were in good agreement with the finite element analysis results.


2011 ◽  
Vol 255-260 ◽  
pp. 619-623
Author(s):  
Yao Zeng ◽  
Chong Wu

Two different specimens of hollow composite columns with perforated ribs, one is the column with double steel skin and the other is with single steel skin, were designed for imposing axial compression test. The tests indicated that both of the columns have a good bearing capacity and the column with double steel skin has a comparatively better bearing capacity than the one with single steel skin. Then comparisons between tests and finite element analysis (FEA) were preceded, which showed that not only the load-displacement relationship of the columns, but also a reasonable failure mode can be simulated by the finite element analysis.


2013 ◽  
Vol 7 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Weijun Yang ◽  
Yongda Yang ◽  
Bing Han ◽  
Pengxiao Jiang

In order to study the basic mechanical property of the new honeycombed-core girderless floor in cast-in-place reinforced concrete, and similarities and differences of the structural performance compared with traditional floor, we carried out the destructive stage loading test on large-scale corner columns supported reinforced concrete honeycombed-core girderless floor. And the thesis conducted finite element analysis in virtue of ANSYS software for solid slab floor, rib floor and honeycombed-core floor. The experiment indicates that honeycombed-core modules cement well with concrete around and participate in the load-carrying; the developing process, distribution and failure mode of crevice in honeycombed-core floor are similar to that of general solid girderless floor. The honeycombed-core girderless floor has higher bearing capacity and better plastic deformation capacity. The finite element analysis manifest that compared with solid slab floor, honeycombed- core floor’s dead load decreases on greater level while deformation increases little, and that compared with rib floor, honeycombed-core girderless floor has higher rigidity. So reinforced concrete honeycombed-core girderless floor is particularly suitable for long-span and large-bay building structure.


2012 ◽  
Vol 538-541 ◽  
pp. 576-579
Author(s):  
Jing Long Fan

In this paper, based on elastic-plastic and thermal-stress coupling finite element method (FEM), the centrifuge pipe mould was molded by Pro/E, and imported into the MARC after meshing, and performed finite element analysis to extrusion stability and the process of hot extrusion by MARC. By summarizing the 3D deformation regulation of the hot extrusion centrifuge pipe mould, the stress changing and mechanical property parameters during the process of hot extrusion , providing reference for the design of equipment in radial hot extrusion. At last, the study could be useful for the device design of radial hot extrusion of the centrifuge pipe mould. At the same time, this method could be use to analyze the other relative thermal extrusion processing.


2013 ◽  
Vol 647 ◽  
pp. 413-417
Author(s):  
Guo Ping Chen ◽  
Shui Wen Zhu

The purpose of this paper is to investigate the stress concentration and fatigue of the prosthetic blood vessels. A three-dimensional finite element analysis was performed with three loading. The good man fatigue thoery was introduced for the fatigue study. As the results, the stress concentration and fatigue mode can be determined. The results prove that the mechanical property of the prosthetic blood vessels can be smiulated through the finite element analysis.


2015 ◽  
Vol 778 ◽  
pp. 28-32
Author(s):  
Yao Man Zhang ◽  
Chao Qun Wang ◽  
Xiu Li Lin

Lathe bed is one of the important parts of machine tool, and its performance will affect the final machining accuracy of the machine tool directly. A numerical control lathe produced by a machine tool plant was taken as the research object, the finite element analysis and optimization method of the Lathe bed were studied. First of all, the external load of the bed was analyzed, static performance finite element analysis of the bed was implemented, and the corresponding analysis results were obtained. Then, the evaluation methods were discussed, and the deformations of junction areas were studied. At the same time, its effect on the performance of machine tool could also be analyzed. Based on the topology optimization method, the conceptual model of Lathe bed could be acquired, and also the rationality of the existing machine tool structure was discussed. The finite element analysis and optimization method of Lathe bed were concluded, which are helpful to obtain the static characteristics of the Lathe bed accurately. Moreover, there is an important practical significance to design the Lathe bed reasonably and to promote the machine tools comprehensive performance.


2011 ◽  
Vol 121-126 ◽  
pp. 3386-3390
Author(s):  
Gui Hua Han ◽  
Bing Wei Gao ◽  
Yun Fei Wang ◽  
Gui Tao Sun ◽  
Di Wu ◽  
...  

In order to improve the dynamic characteristics of crossbeam of heavy NC gantry moving boring & milling machine, the ribbed slab structure of beam were analyzed and optimized with the finite element analysis software, and the comprehensive optimization method of the number, size and layout of ribbed slab were putted forward based on the classification of ribbed slab structure. According to the result of the finite element analysis, the internal type and horizontal spacing of ribbed slab are optimized to get the best number, spacing, thickness and height of ribbed slab; Under the required intensity, stiffness and stability conditions materials are distributed reasonably to reduce beam weight which make little deformation and the uniform stress distribution. The comprehensive optimization method study has reference value for ribbed slab structure design.


Sign in / Sign up

Export Citation Format

Share Document