Towards Bioelastomers via Coordination Polymerization of Renewable Terpenes Using Neodymium-Based Catalyst Systems

2018 ◽  
Vol 779 ◽  
pp. 115-121 ◽  
Author(s):  
Ramón Díaz de León ◽  
Ricardo López ◽  
Luis Valencia ◽  
Ricardo Mendoza ◽  
Judith Cabello ◽  
...  

Syntheses of biolestomers through the coordination polymerization of terpenes, such as ocimene (Oc), β-myrcene (My) andtrans-β-farnesene (Fa), using catalyst systems based on neodymium versatate (NdV3) are reported in this work. All polymerization products were characterized by size exclusion chromatography, differential scanning calorimetry and nuclear magnetic resonance in order to determine their macromolecular, thermal and structural characteristics. The NdV3in combination with diisobutylaluminum hydride as cocatalyst and diethylaluminum chloride (DEAC) as halogen source was found effective for Oc polymerizations providing polyocimenes with molecular weights (Mn) in the order of 20 to 57 Kg/mol, broad molecular weight distributions (Mw/Mn) since 3.8 until 8.2, preferablycis-1,4 content (61-69 %) and glass transition temperatures (Tg) in the range of-30 to-26 °C. On the other hand, the same NdV3but now activated by modified methylaluminoxane and DEAC was found considerably active in My and Fa polymerizations, affording polymyrcenes and polyfarnesenes withMnbetween 155 and 243 Kg/mol, as well asMw/Mnranging between 3.1-3.9 and 1,4 content values were found higher than 94 % for this subfamily of polyterpenes, being the 3,4 content the complement for completing 100 %. Moreover, it was demonstrated thatTgof polyterpenes studied depends on the size of pendant group, shifting it towards lower temperatures as increasing the size of the pendant group.

Author(s):  
Jan F. B ranthaver ◽  
Raymond E. Robertson ◽  
John J. Duvall

It is known that the rheological properties of mixtures of organic compounds are functions of molecular weight distributions. However, with respect to asphalts, which are composed of many different compounds and compound types, molecular weights are difficult to measure. This difficulty occurs because the molecular associations that form are held together by forces of varying strengths and are partly broken up by heat and solvents. In theory, the strongest molecular associations in asphalts should have the greatest influence on the rheological properties of asphalts. These associations would be expected to be the major contributors to the asphalt's behaving as if it were a relatively high molecular weight material. Asphalt molecular associations should be isolatable by means of size exclusion chromatography. Several fractions of varying molecular weights (measured by membrane osmometry and vapor phase osmometry) were isolated from Strategic Highway Research Program (SHRP) asphalt AAD-1 by preparative size exclusion chromatography. Molecular weights of these fractions ranged from approximately 2,000 daltons to over 40,000 daltons. When these fractions were independently mixed with asphalt AAD-1 solvent moiety, mixtures were obtained whose rheological properties were a function of the molecular weights and concentrations of the associated materials. These results support the microstructural model of asphalt proposed during SHRP. The results also suggest that the unusual rheological properties of some asphalts may be explained by measuring molecular weight distributions. This type of information may be useful for modification of asphalts to achieve desirable rheological properties.


2018 ◽  
Vol 33 (2) ◽  
pp. 180-197 ◽  
Author(s):  
Khezrollah Khezri ◽  
Yousef Fazli

Pristine mesoporous diatomite was employed to prepare polystyrene/diatomite composites. Diatomite platelets were used for in situ polymerization of styrene by atom transfer radical polymerization to synthesize tailor-made polystyrene nanocomposites. X-Ray fluorescence spectrometer analysis and thermogravimetric analysis (TGA) were employed for evaluating some inherent properties of pristine diatomite platelets. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite platelets. Evaluation of pore size distribution and morphological studies were also performed by scanning and transmission electron microscopy. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography, respectively. Linear increase of ln ( M0/M) with time for all the samples shows that polymerization proceeds in a living manner. Addition of 3 wt% pristine mesoporous diatomite leads to an increase of conversion from 72% to 89%. Molecular weight of polystyrene chains increases from 11,326 g mol−1 to 14134 g mol−1 with the addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.13 to 1.38. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 81.9°C to 87.1°C by adding 3 wt% of mesoporous diatomite platelets.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Valentina Sabatini ◽  
Hermes Farina ◽  
Luca Basilissi ◽  
Giuseppe Di Silvestro ◽  
Marco A. Ortenzi

Polylactic acid (PLA) nanocomposites were prepared via “in situ” ring opening polymerization (ROP) of lactide using a montmorillonite, Cloisite 15A, employed after surface treatment with 3-Glycidoxypropyltrimethoxysilane. The dispersion of the nanoparticles was checked using Wide Angle X-Ray Scattering (WAXS) and Transmission Electron Microscopy (TEM); both the effects of different amounts of montmorillonite and silane were measured on molecular weights and on thermal and rheological properties, using Size Exclusion Chromatography (SEC), Differential Scanning Calorimetry (DSC), thermogravimetric analyses (TGA), and rheological analyses. It was found that even very low amounts (0.1% w/w) of nanoparticles greatly affect nanocomposites properties. Unmodified montmorillonite tends to decrease molecular weights, deactivating the catalytic system used for ROP of lactide, but when epoxy silane is present molecular weights increase. Melt crystallization temperatures increase with modified nanoparticles, which enhance crystallization process. TGA analyses show that when pure montmorillonite is present, nanocomposites have lower thermal stability with respect to standard PLA; when silane is used thermal stability can get much higher than standard PLA as silane content increases. The rheological behaviour of nanocomposites shows that melt viscosity is far higher than that of standard PLA at low shear rates and also a marked shear thinning behaviour can be achieved.


Sign in / Sign up

Export Citation Format

Share Document