Mechanical Interlocking of Titanium and Steel Using Friction Stir Forming

2018 ◽  
Vol 792 ◽  
pp. 59-64
Author(s):  
Hamed Mofidi Tabatabaei ◽  
Shun Orihara ◽  
Tadashi Nishihara ◽  
Takahiro Ohashi

This study presents a novel method for mechanically interlocking dissimilar alloys of pure titanium with steel through using the principles of friction stir forming (FSF) technique. In present study, titanium plate is placed on top of a steel sheet containing a screwed hole. FSF is conducted on top of the titanium alloy, which produces sufficient heat to plasticize the alloy. This results in a flow of titanium into the screw hole in the steel, due to the plastic deformation, thereby mechanically interlocking titanium with the steel. The mechanical properties of the developed interlock are investigated through tensile and hardness tests and microstructural observation.

2018 ◽  
Vol 926 ◽  
pp. 17-22
Author(s):  
Hamed Mofidi Tabatabaei ◽  
Ryuji Ishikawa ◽  
Tadashi Nishihara

In the present study, a novel method for mechanically interlocking the dissimilar alloys of A6061-T6 aluminum alloy and SS400 structural steel using friction-stir forming (FSF) is suggested. In this study, the aluminum alloy is placed on top of a steel sheet containing a screwed hole. The present study suggests that friction-stir spot forming (FSSF) can be used to form a mechanical interlock between the aluminum alloy and steel sheet. FSSF is conducted on top of the aluminum alloy, which produces sufficient heat to plasticize the aluminum alloy. This results in a flow of aluminum into the screw hole in the steel, due to the plastic deformation, thereby mechanically interlocking the aluminum with the steel. Moreover, with the proposed method, the authors present a new concept of an easily separable joining of dissimilar alloys. The mechanical properties of the developed interlock are investigated through tensile and hardness tests and microstructural observation.


2016 ◽  
Vol 838-839 ◽  
pp. 574-580 ◽  
Author(s):  
Hamed Mofidi Tabatabaei ◽  
Takahiro Hara ◽  
Tadashi Nishihara

This study proposes a novel method of manufacturing composite vibration-damping steel sheet with Zn-22Al superplastic alloy using friction stir forming (FSF). Trials of mechanical interlocking of steel sheet with Zn-22Al superplastic alloy using FSF were carried out on a modified milling machine. The results are discussed in terms of residual microstructures and mechanical properties. We concluded that cladding steel sheet with Zn-22Al superplastic alloy using FSF results in superplastic forming and diffusion bonding.


Author(s):  
Sladjan Lazarevic ◽  
Kenneth A. Ogata ◽  
Scott F. Miller ◽  
Grant H. Kruger ◽  
Blair E. Carlson

Friction stir forming (FSF) is a new environmentally friendly manufacturing process for lap joining of dissimilar materials. Fundamentally, this process is based on frictionally heating and mechanically stirring work material of the top piece in a plasticized state to form a mechanical interlocking joint within the bottom material. In this research, the significant process parameters were identified and optimized for Al 6014 alloy and mild steel using a design of experiments (DOE) methodology. The overall joint structure and grain microstructure were mapped as the FSF process progressed and the aluminum work material deformed through different stages. It was found that the work material within the joint exhibited two layers, thermomechanical affected zone, which formed due to the contact pressure and angular momentum of the tool, and heat affected formation zone, which was composed of work material formed through the hole in the steel sheet and into the anvil cavity. Two different geometries of anvil design were employed to investigate geometrical effects during FSF of the aluminum. It was found that the direction and amount of work material deformation under the tool varies from the center to the shoulder.


2018 ◽  
Vol 382 ◽  
pp. 114-119 ◽  
Author(s):  
Hamed Mofidi Tabatabaei ◽  
Tadashi Nishihara

In this study, a novel method of mechanical interlocking of super-thin stainless steel strands with different aluminum alloys was conducted by using friction stir forming (FSF). The potential for the development of a multi-functional composite material was studied experimentally. It was concluded that FSF can successfully interlock stainless steel strands and different Al alloys and presents the possibility of improving the mechanical properties of the alloy. Trials of FSF were carried out on a modified vertical milling machine. The results are discussed in terms of microstructure observations, hardness distributions and tensile tests.


2015 ◽  
Vol 6 (1) ◽  
pp. 51-55 ◽  
Author(s):  
D. Trimble ◽  
H. Mitrogiannopoulos ◽  
G. E. O'Donnell ◽  
S. McFadden

Abstract. Some aluminium alloys are difficult to join using traditional fusion (melting and solidification) welding techniques. Friction Stir Welding (FSW) is a solid-state welding technique that can join two plates of material without melting the workpiece material. This proecess uses a rotating tool to create the joint and it can be applied to alumium alloys in particular. Macrostructure, microstructure and micro hardness of friction stir welded AA2024-T3 joints were studied. The influence of tool pin profile on the microstructure and hardness of these joints was examined. Square, triflute and tapered cylinder pins were used and results from each weldment are reported. Vickers micro hardness tests and grain size measurements were taken from the transverse plane of welded samples. Distinct zones in the macrostructure were evident. The zones were identified by transitions in the microstructure and hardness of weld samples. The zones identified across the sample were the the unaffected parent metal, the Heat Affected Zone (HAZ), the Thermo-Mechanicaly Affected Zone (TMAZ), and the Nugget Zone (NZ). Measured hardness values varied through each FSW zone. The hardness in each zone was below that of the parent material. The HAZ had the lowest hardness across the weld profile for each pin type tested. The cylindrical pin consistently produced tunnel and joint-line defects. Pin profiles with flat surface features and/or flutes produced consolidated joints with no defects.


2011 ◽  
Vol 189-193 ◽  
pp. 3266-3269 ◽  
Author(s):  
Yu Hua Chen ◽  
Peng Wei ◽  
Quan Ni ◽  
Li Ming Ke

Titanium alloy TC1 and Aluminum alloy LF6 were jointed by friction stir welding (FSW), and the influence of process parameters on formation of weld surface, cross-section morphology and tensile strength were studied. The results show that, Titanium and Aluminum dissimilar alloy is difficult to be joined by FSW, and some defects such as cracks and grooves are easy to occur. When the rotational speed of stir head(n) is 750r/min and 950r/min, the welding speed(v) is 118mm/min or 150mm/min, a good formation of weld surface can be obtained, but the bonding of titanium/aluminum interface in the cross-section of weld joint is bad when n is 750r/min which results in a low strength joint. When n is 950r/min and v is 118mm/min,the strength of the FSW joint of Titanium/Aluminum dissimilar materials is 131MPa which is the highest.


Sign in / Sign up

Export Citation Format

Share Document