Influence of Process Parameters on the Characteristics of Hydrophilic Drug-Loaded Microparticles through Double Emulsion Solvent Evaporation Technique

2019 ◽  
Vol 819 ◽  
pp. 252-257 ◽  
Author(s):  
Lalinthip Sutthapitaksakul ◽  
Pornsak Sriamornsak

The purpose of this study was to investigate the influence of process parameters on the characteristics of microparticles using double emulsion solvent evaporation method for encapsulation of hydrophilic drug. Donepezil hydrochloride (DPH), a reversible cholinesterase inhibitor, was selected as a model hydrophilic drug. Prior to conducting an experiment, the target particle size of microparticles was set at approximately 200 μm. The investigated process parameters include pH of outer water phase, stirring time, polymer amount, and volume of outer water phase. The results showed that DPH-loaded microparticles was successfully prepared in two steps. In the first step, the primary emulsion was prepared by dissolving DPH in distilled water before emulsifying in dichloromethane (DCM) containing different amounts of poly(butylmethacrylate-co-2-dimethylaminoethyl-methacrylate-co-methyl-methacrylate) (PBM-DM-MM) using ultrasonic probe. In the second step, the primary emulsion was emulsified in polyvinyl alcohol (PVA) solution by overhead stirrer to prepare double emulsion. After solvent evaporation, the microparticles were collected by centrifugation and washed with distilled water. Based on the statistical analysis, stirring time, polymer amount and volume of outer water phase were the main significant parameters influencing particle size of microparticles.

2021 ◽  
pp. 108201322110180
Author(s):  
Aušra Šipailienė ◽  
Greta Šlimaitė ◽  
Sigita Jeznienė ◽  
Petras Rimantas Venskutonis ◽  
Daiva Leskauskaitė

In this study, double emulsion containing L. plantarum F1 cells and prebiotic mannitol in the inner water phase, lipophilic sea buckthorn pomace extract as an antioxidant in the oil phase, and alginate in the outer water phase showed high encapsulation yield (82.19%), good cell survival rate (76.99%) and low chemical degradation of the oil (peroxide value - 3.8 meq O2/kg fat) after 42 days of storage. Gelation of the outer water phase enhanced the viability of L. plantarum F1 cells both during storage and under gastrointestinal conditions due to strong physical barrier formation. Encapsulated L. plantarum F1 viability throughout the 30-day storage period decreased to the value meeting the minimum required dose for probiotics. In vitro digestion of the loaded alginate capsules showed high survival rate of encapsulated cells under gastric conditions and significant reduction at the end of the duodenal phase of digestion.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1046
Author(s):  
Lalinthip Sutthapitaksakul ◽  
Kasitpong Thanawuth ◽  
Crispin R. Dass ◽  
Pornsak Sriamornsak

The objective of this research was to optimize the tasted-masked microparticles for orally disintegrating tablets containing donepezil hydrochloride using quality risk assessment and design of experiment approaches. The double emulsion solvent evaporation technique using aminoalkyl methacrylate copolymer (AMC) was used to prepare taste-masked microparticles. Factors affecting the quality of the taste-masked microparticles were analyzed using an Ishikawa diagram. A risk-ranking approach was used to rank the formulation and process risks. Furthermore, the effect of AMC quantity, stirring time, and volume of outer water phase on various responses, such as particle size, the amount of drug dissolved at 5 min (Q5) in simulated saliva fluid, and mean dissolution time (MDT) in simulated gastric fluid, was investigated using the Box-Behnken design. The optimized microparticles were then used to prepare orally disintegrating tablets (ODTs) and evaluated by in vitro and in vivo testing. The results demonstrated that particle size was influenced by the AMC amount and stirring time. Q5 was significantly affected by the amount of AMC and the volume of the outer water phase. On the other hand, these two factors had a positive effect on MDT. The optimized microparticles had a particle size of 174.45 ± 18.19 µm, Q5 of 5.04%, and MDT of 5.97 min. The ODTs with taste-masked microparticles showed acceptable in vitro dissolution with an MDT of 5 min. According to the results of a panel of six human volunteers, they greatly improved palatability.


2019 ◽  
Vol 34 (3) ◽  
pp. 367-375
Author(s):  
L.-X. Wang ◽  
D.-F. Wang ◽  
L. Jiang ◽  
N. Bian ◽  
Q. Li ◽  
...  

2021 ◽  
Vol 54 ◽  
pp. 961-971
Author(s):  
Sergey Shantarenko ◽  
Victor Kuznetsov ◽  
Eugene Ponomarev ◽  
Alexander Vaganov ◽  
Alexey Evseev

Sign in / Sign up

Export Citation Format

Share Document