Antibacterial Agent-Incorporated Cholesterol Phase Inversion-Based In Situ Forming Matrix for Crevicular Pocket Delivery

2020 ◽  
Vol 859 ◽  
pp. 107-112
Author(s):  
Orn Setthajindalert ◽  
Khine Sabel Aung ◽  
Juree Charoenteeraboon ◽  
Arissarakorn Sirinamaratana ◽  
Thawatchai Phaechamud

Phase inversion in situ forming matrix is one of the promising drug delivery systems for periodontitis treatment owing to the prospective high antimicrobial agent level in the gingival crevicular fluid. Typically, this drug delivery system is a fluid polymeric solution that could change simultaneously to matrix-like after injection into aqueous physiological environment. The main propose of the current study was to achieve successful development of antibacterial agent-incorporated cholesterol phase inversion in situ forming matrix for crevicular pocket delivery. In this study, cholesterol was used as a fat matrix former, while N-methyl pyrrolidone (NMP) was used as the solvent and menthol was used as co-solvent. The 10%w/w metronidazole or doxycycline hyclate was employed as the active compounds. The developed formula were evaluated for viscosity and rheological behavior, antimicrobial activity using cup agar diffusion method and in vitro drug release using dialysis tube method. The consistency index from rheological test of doxycycline hyclate and metronidazole-loaded in situ forming matrices was not significantly different (p<0.05). Interestingly, the viscosity of all formula was quite low; thus, this characteristic provoked an ease of injection. They inhibited against Porphyromonasgingivalis efficiently more than cholesterol in situ forming matrix base (p<0.05). Drug release from systems loaded with doxycycline hyclate and metronidazole were rapid and nearly not different. Owing to the apparent efficiently inhibition against Porphyromonasgingivalis the in situ forming matrix loading doxycline hyclate was selected for further development to minimize the burst release and to prolong the drug release.

2020 ◽  
Vol 17 ◽  
Author(s):  
Elham Khodaverdi ◽  
Farhad Eisvand ◽  
Mohammad Sina Nezami ◽  
Seyedeh Nesa Rezaeian Shiadeh ◽  
Hossein Kamali ◽  
...  

Background:: Doxycycline (DOX) is used in treating a bacterial infection, especially for periodontitis treatment. Objective: To reduce irritation of DOX for subgingival administration and increase the chemical stability and against enzy-matic, the complex of α-cyclodextrin with DOX was prepared and loaded into injectable in situ forming implant based on PLGA. Methods:: FTIR, molecular docking studies, X-ray diffraction, and differential scanning calorimetry was performed to char-acterize the DOX/α-cyclodextrin complex. Finally, the in-vitro drug release and modeling, morphological properties, and cellular cytotoxic effects were also evaluated. Results:: The stability of DOX was improved with complex than pure DOX. The main advantage of the complex is the al-most complete release (96.31 ± 2.56 %) of the drug within 14 days of the implant, whereas in the formulation containing the pure DOX and the physical mixture the DOX with α-cyclodextrin release is reached to 70.18 ± 3.61 % and 77.03 ± 3.56 %, respectively. This trend is due to elevate of DOX stability in the DOX/ α-cyclodextrin complex form within PLGA implant that confirmed by the results of stability. Conclusion:: Our results were indicative that the formulation containing DOX/α-cyclodextrin complex was biocompatible and sustained-release with minimum initial burst release.


2007 ◽  
Vol 25 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Heiko Kranz ◽  
Erol Yilmaz ◽  
Gayle A. Brazeau ◽  
Roland Bodmeier

2019 ◽  
Vol 10 (4) ◽  
pp. 2765-2776
Author(s):  
Naresh Kshirasagar ◽  
Goverdhan Puchchakayala ◽  
Balamurgan K

The new investigation in this present work is to develop microsponges constructed novel drug delivery system for sustained action of Flurbiprofen. Quai-emulsion solvent diffusion method was engaged using Ethyl cellulose and Eudragit RS100 with drug: polymer ratio for development of microsponges. For optimization purposes, several factors are considered in the investigation. Several evaluation studies for the formed microsponges were carried out FT-IR, SEM, DSC, X-RD, particle size analysis, morphology, drug loading and In vitro drug release studies were carried out. Finally, it was concluded that there is no drug-polymer interaction as per DSC & FT-IR. Encapsulation efficiency, particle size and drug content showed a higher impact on alteration of drug-polymer ratio. SEM studies showed that morphological microsponges are spherical and porous in nature and with the mean particle size of 38.86 μm. The gel loaded with microsponges, were followed by In vitro and Ex vivo drug release studies by modified Franz diffusion cell. Skin delivery of optimized formulation enhanced the drug residence time and maintained therapeutic concentration for an extended period of time, which is possible to show sustained action of the drug.


2019 ◽  
Vol 16 (4) ◽  
pp. 331-340
Author(s):  
Hanmei Li ◽  
Yuling Xu ◽  
Yuna Tong ◽  
Yin Dan ◽  
Tingting Zhou ◽  
...  

Objective: In this study, an injectable Sucrose Acetate Isobutyrate (SAIB) drug delivery system (SADS) was designed and fabricated for the sustained release of Ropivacaine (RP) to prolong the duration of local anesthesia. Methods: By mixing SAIB, RP, and N-methyl-2-pyrrolidone, the SADS was prepared in a sol state with low viscosity before injection. After subcutaneous injection, the pre-gel solution underwent gelation in situ to form a drug-released depot. Result: The in vitro release profiles and in vivo pharmacokinetic analysis indicated that RP-SADS had suitable controlled release properties. Particularly, the RP-SADS significantly reduced the initial burst release after subcutaneous injection in rats. Conclusion: In a pharmacodynamic analysis of rats, the duration of nerve blockade was prolonged by over 3-fold for the RP-SADS formulation compared to RP solution. Additionally, RP-SADS showed good biocompatibility in vitro and in vivo. Thus, the SADS-based depot technology is a safe drug delivery strategy for the sustained release of local anesthetics with long-term analgesia effects.


Author(s):  
Chitra Gupta ◽  
VIJAY JUYAL ◽  
Upendra Nagaich

Objective: The present study emphasizes the synthesis, optimization, and evaluation of ocular in-situ gel for ophthalmic drug delivery against conjunctivitis. Methods: Pre-formulation studies on the drug and polymers were carried out, which included the study of various physicochemical properties of the drug and drug-polymer compatibility studies. The 12 different formulations were further pre-optimised by Taguchi method for determining the number of influential factors. Furthermore, the formulation optimization was done by using ‘Box–Behnken’ design (BBD) (Design expert 10 software) for assessing the effect of formulation variables on product characteristics viz. viscosity, gelation temperature (GT), and mean release time (MRT). About 13 suggested runs of the experiment were carried out and formulations were optimised. Finally, three batches of the optimised formulation were prepared and evaluated for in vitro drug release, isotonicity of formulation, anti-microbial potential, ocular irritancy, and accelerated stability testing. Results: Pre-formulation study confirmed the purity, solubility, and compatibility of drug measured by λmax, partition coefficient, stability study, and Fourier-transform infrared spectroscopy (FTIR) analysis. Taguchi screening method suggested about 12 different formulations and 3 most prominent influential factors including viscosity, GT, and drug release. 13 different formulations designed based on ‘BBD’ method were further optimised by considering the most influential factors suggested by Taguchi screening. The in vitro evaluation of the optimised formulation gave satisfactory results in terms of drug release, and anti-microbial activity. It was found to be isotonic with no ocular irritancy. Further, the preparation immediately transformed from sol to gel upon administration into cul-de-sac region of the eye due to multi-dimensional approaches utilised for in-situ gel formation namely temperature change Pluronic, ion sensitivity due to Gellan-gum, pH sensitivity because of Carbopol. Conclusion: The optimised in-situ gelling ocular drug formulation showed promising potency for ophthalmic drug delivery with no irritancy due to the multifactorial mechanism.


2020 ◽  
Vol 10 ◽  
Author(s):  
Nitin Dhedage ◽  
Gayasuddin Khan ◽  
Gufran Ajmal ◽  
Manish Kumar ◽  
Abhishek Jha ◽  
...  

: The goal of this research was to produce intrapocket dental film, composed of polycaprolactone and carbopol blends by a modified solvent casting method. Prepared films were consistent in thickness (2.10±0.56 to 2.50±0.39 mm) and weight (35.23±0.37 to 39.45±0.45 mg) with drug entrapment of up to 87.63±1.98 percent. The concentration of carbopol is observed to have a direct relationship with thickness, film weight, and swelling factor of the prepared dental film. The film has a surface pH close to gingival crevicular fluid pH and is therefore appropriate for the application. The developed film exhibited a biphasic drug release profile with an initial burst release followed by a continuous release for more than 11 days. Drug release kinetic study supports the release of the drug by a diffusion-based process, as best explained by the Korsmeyer Peppas kinetics (R2 = 0.9635). In-vitro antimicrobial activity was also in accordance with drug release, with a high initial zone of inhibition (ZOI) (49.32±0.156mm), followed by 14.28±0.080 mm ZOI on 11th day. The in-vivo study showed that the prepared film was able to prevent periodontal ligament degeneration as observed in the periodontitis experiment animal model. In conclusion, prepared intrapocket dental film based on caprolactone and carbopol can be used as a novel local drug delivery system for the management of periodontitis.


2021 ◽  
Vol 18 ◽  
Author(s):  
Saeed Bazraee ◽  
Hamid Mobedi ◽  
Arezuo Mashak ◽  
Ahmad Jamshidi

Introduction: Typically, in situ forming implants utilize Poly (lactide-co-glycolide) (PLGA) as a carrier and N-methyl-2-pyrrolidone (NMP) as a solvent. However, it is essential to develop different carriers to release various drugs in a controlled and sustained manner with economic and safety considerations. Objective: The present study aims to evaluate the in-vitro release of Bupivacaine HCl from in situ forming systems as post-operative local anesthesia. Methods: We used Sucrose acetate isobutyrate (SAIB), PLGA 50:50, and a mixture of them as carriers to compare the release behavior. Besides, the effect of PLGA molecular weight (RG 502H, RG 503H, and RG 504H), solvent type, and solvent concentration on the drug release profile was evaluated. The formulations were characterized by investigating their in-vitro drug release, rheological properties, solubility, and DSC, in addition to their morphological properties. Furthermore, the Korsmeyer-Peppas and Weibull models were applied to the experimental data. The results revealed that a mixture of SAIB and PLGA compared to using them solely can extend the Bupivacaine HCl release from 3 days to two weeks. Results: The DSC results demonstrated the compatibility of the mixture by showing a single Tg. The formulation with NMP had a higher burst release and final release in comparison with other solvents by 30% and 96%, respectively. Increasing the solvent concentration from 12% to 32% raised the drug release significantly, which confirmed the larger porosity in the morphology results. From the Korsmeyer-Peppas model, the mechanism of drug release is predicted to be non-Fickian diffusion.


2019 ◽  
Vol 11 (1) ◽  
pp. 247 ◽  
Author(s):  
Shahid Ud Din Wani ◽  
Gangadharappa H. V. ◽  
Ashish N. P.

Objective: The aim of the present work was to formulate silk fibroin (SF) nanospheres (NS’s) for drug delivery application. The current study was designed to advance the water solubility and bio-availability of telmisartan by nanoprecipitation method.Methods: SF NS’s loaded with TS were prepared by nanoprecipitation method. The drug was dissolved in aqueous solution of SF by using acetone as a non-solvent. The prepared NS’s were then characterized by FTIR, X-ray diffraction and zeta potential, and were evaluated for its, surface morphology, %drug content, encapsulation efficiency and in vitro drug release.Results: The evaluation results of SF NS’s loaded of TS showed 74.22±0.17 % entrapment efficiency, 35.21±0.02 % of drug loading, and-4.9 mV to-13.6 mV of zeta potential due to the proper bounding of TS with the β-sheets of SF, the particle size reported was within the size range of 160-186 nm having smooth surface and were spherical in shape. The SFNS’s pattern switched from random coil to β-sheet formation on treating with acetone. FTIR and DSC studies marked no such inter-molecular interactions between SF and drug molecules. The % cumulative in vitro drug release from SF NS’s exhibited quick burst release. The in vitro cumulative drug release of SF NS’s of TS it was found that about 74% of the drug was released within 8 h and about 96% of drug released at 24 hr. The rate of drug release increased with the increase in SF ratio.Conclusion: It is believed that these SF NS’s will find potential applications in drug delivery release as drug carriers, especially poor water-soluble drugs. All these results proposed that SF NS’s are eventuality handy in various drug delivery systems.


1998 ◽  
Vol 550 ◽  
Author(s):  
A.J. Mchugh ◽  
P.D. Graham ◽  
K.J. Brodbeck

AbstractDark ground optical microscopy, electron microscopy, and protein release rate studies have been used to quantify the effects of formulation changes on the phase inversion dynamics and in vitro drug release properties of an injectable PLGA-based drug delivery system. Gel growth rates and water influx rates are determined from plots of the square of the respective front with time. Results show that additives that increase the solution gelation rate and produce finger-like void morphologies result in higher initial release rates. Conversely, additives that slow the rate of gelation dramatically reduce the initial drug release rate and lead to a more dense sponge-like morphology.


Sign in / Sign up

Export Citation Format

Share Document