scholarly journals Formulation and characterization of flurbiprofen loaded microsponge based gel for sustained drug delivery

2019 ◽  
Vol 10 (4) ◽  
pp. 2765-2776
Author(s):  
Naresh Kshirasagar ◽  
Goverdhan Puchchakayala ◽  
Balamurgan K

The new investigation in this present work is to develop microsponges constructed novel drug delivery system for sustained action of Flurbiprofen. Quai-emulsion solvent diffusion method was engaged using Ethyl cellulose and Eudragit RS100 with drug: polymer ratio for development of microsponges. For optimization purposes, several factors are considered in the investigation. Several evaluation studies for the formed microsponges were carried out FT-IR, SEM, DSC, X-RD, particle size analysis, morphology, drug loading and In vitro drug release studies were carried out. Finally, it was concluded that there is no drug-polymer interaction as per DSC & FT-IR. Encapsulation efficiency, particle size and drug content showed a higher impact on alteration of drug-polymer ratio. SEM studies showed that morphological microsponges are spherical and porous in nature and with the mean particle size of 38.86 μm. The gel loaded with microsponges, were followed by In vitro and Ex vivo drug release studies by modified Franz diffusion cell. Skin delivery of optimized formulation enhanced the drug residence time and maintained therapeutic concentration for an extended period of time, which is possible to show sustained action of the drug.

Author(s):  
Revathi S ◽  
Dhanaraju Md

 Objective: The study is to formulate and assess the effects of different variables on the release profile of sitagliptin microspheres.Methods: The microspheres were prepared by emulsion-solvent diffusion method and ionotropic gelation method using ethyl cellulose and sodium alginate as the polymers, respectively. The formulations are optimized by applying 23 factorial design based on the drug-polymer ratio, stirring speed, and method of preparation.Results: The drug-polymer interaction was checked by the Fourier-transform infrared spectroscopy and differential scanning calorimetry the results of which indicated no incompatibility. The formulated sitagliptin microspheres were evaluated for shape, morphology, particle size, the degree of swelling, encapsulation efficiency, in vitro drug release studies for 12 h, and kinetics of drug release.Conclusion: The results showed that the drug-polymer ratio and stirring speed affected the particle size and drug release. The release of the drug was found to be sustained, and diffusion path is following cube root law of Hixson-Crowell kinetics. The batch F3 was found to be desirable and was further characterized by scanning electron microscope for morphology.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Rashmi Sareen ◽  
Kavita Nath ◽  
Nitin Jain ◽  
K. L. Dhar

The present study was aimed to develop and optimize the microsponges of curcumin for colon specific drug delivery in a view to bypass the upper gastrointestinal tract (GIT) for enhanced therapeutic effect. Microsponges were developed by quasi emulsion solvent diffusion method using 32full factorial design. Prepared microsponges were optimized in order to analyze the effects of independent variables (volume of ethanol and Eudragit L100) on the encapsulation efficiency, particle size, and drug release. The optimized formulation was subjected toin vivostudy using acetic acid induced colitis model in rats. The F7 was selected as optimized formulation based on particle size of 41.63 μm, % entrapment efficiency of 78.13%, and % cumulative drug release of 84.12%, and desirability factor of 0.83. Release studies revealed that microsponges prevented the premature release of curcumin in upper GIT and specifically released the drug at colonic pH. The drug release profile of F7 formulation was subjected to different kinetic models and based upon the best correlation coefficient (r2=0.9927) the release was found to follow Higuchi model, which suggested diffusion as the main mechanism of drug release. Pharmacodynamic study showed that curcumin loaded microsponges causes a significant decrease in edema, necrosis, and hemorrhage of colon as compared to free curcumin. This study proves that curcumin loaded microsponges may act as a promising drug delivery system for treatment of ulcerative colitis.


Author(s):  
Abdul Baquee Ahmed ◽  
Iman Bhaduri

Objective: The objective of the present study was to chemical modification, characterization and evaluation of mucoadhesive potentiality of Assam bora rice starch as potential excipients in the sustained release drug delivery system. Methods: The starch was isolated from Assam bora rice and esterified using thioglycolic acid and characterized by Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC) and Nuclear magnetic resonance (NMR). The 10% w/v gel formulation based on modified bora rice starch loaded with irinotecan (0.6%) was prepared and evaluated for various rheological properties, ex-vivo mucoadhesion using goat intestine and in vitro drug release study in phosphate buffer pH 6.8.Results: The chemical modification was confirmed by FT-IR and NMR studies with the presence of the peak at 2626.74 cm-1 and a singlet at 2.51 respectively due to–SH group. Ex-vivo mucoadhesion studies showed 6.6 fold increases in mucoadhesion of the modified starch with compared to native starch (46.3±6.79g for native starch; 308.7±95.31g for modified starch). In vitro study showed 89.12±0.84 % of drug release after 6 h in phosphate buffer pH 6.8 and the release kinetics followed Non-Fickian diffusion.Conclusion: The modified Assam bora rice starch enhanced a mucoadhesive property of the native starch and thus, can be explored in future as a potential excipient for the sustained release mucoadhesive drug delivery system.


Author(s):  
GEETHA V. S. ◽  
MALARKODI VELRAJ

Objective: To formulate, optimize and evaluate 5-fluorouracil loaded liquorice crude protein nanoparticles for sustained drug delivery using Box-Behnken design. Methods: 5-fluorouracil (5-FU) loaded liquorice crude protein (LCP) nanoparticles were prepared by desolvation method using ethanol-water (1:2 ratio), Tween-80 (2%v/v) as stabilizing agent and gluteraldehyde (8% v/v) as cross linking agent. The optimization of prepared nanoparticles was carried out using Box-Behnken design with 3 factors 2 levels and 3 responses. The independent variables were A)5-FU concentration B)LCP concentration and C) sonication time while the responses were R1) Drug entrapment efficiency R2) Drug loading efficiency and R3) Particle size. The correlation between factors and responses were studied through response surface plots and mathematical equations. The nanoparticles were evaluated for FTIR, physicochemical properties like particle size and zeta potential by Photon correlation spectroscopy (PCS) and surface morphology by TEM. The entrapment efficiency, drug loading efficiency and in vitro drug release studies in PBS pH 7.4 (24 h) were carried out. The observed values were found to be in close agreement with the predicted value obtained from the optimization process. Results: 5-fluorouracil loaded LCP nanoparticles were prepared by desolvation method, the optimization was carried out by Box-Behnken design and the final formulation was evaluated for particle size (301.1 nm), zeta-potential (-25.8mV), PDI(0.226), with entrapment efficiency (64.07%), drug loading efficiency (28.54%), in vitro drug release (65.2% in 24 h) respectively. The formulated nanoparticles show Higuchi model drug release kinetics with sustained drug delivery for 24 h in pH7.4 buffer. Conclusion: The results were proved to be the most valuable for the sustained delivery of 5-Fluorouracil using liquorice crude protein as carrier. 5-FU–LCP nanoparticles were prepared using Tween-80 as stabilizing agent and gluteraldehyde as cross-linking agent to possess ideal sustained drug release characteristics.


2016 ◽  
Vol 12 ◽  
pp. 1-8
Author(s):  
S. Nagalakshmi ◽  
T. Sandeep ◽  
S. Shanmuganathan

Delivery of drug through topical route, delivers most convenient and novel approach. The Skin can offer several advantages as a route of drug administration although its barrier nature makes it difficult for most drugs to penetrate in to and permeate through it. During the past decades there has been a lot of interest in lipid vesicles as a tool to improve topical drug delivery. Vesicular system such as liposomes, niosomes, ethosomes and elastic deformable vesicles provide an alternative for improved skin drug delivery. In fact vesicles can act as drug carriers controlling drug release. The Research findings were intended to develop sustained release of aceclofenac niosomes formulations in order to reduce gastrointestinal disturbances and to provide better effect when applied topically. Niosomes of aceclofenac was prepared by modified ether injection method using different ratio of surfactants (Tween 20, 40, 60 & 80) with cholesterol and drug. The developed formulations were optimized based on the high entrapment efficiency and in-vitro release studies. Optimized batch was selected and made in to topical niosomal gel using gelling agents like carbopol and sodium carboxy methyl cellulose. Formulation were evaluated for various parameters like vesicle shape, vesicle size, entrapment efficiency, drug content, compatibility studies, in-vitro release studies and stability studies. Ether injection method was found to be most satisfactory in terms of niosome particle size, drug entrapment efficiency was found to be 88.68 ±0.64 % and in-vitro release studies showed 40% of sustain drug release at the end of 8 hrs of study when compared with marketed formulation. Hence, the formulated niosomal topical gel was found to be a better alternative when compared to the marketed formulation in terms of better efficacy, bioavailability and permeation.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


2019 ◽  
Vol 9 (1) ◽  
pp. 190-194
Author(s):  
Rima Kassab ◽  
Dima Moussa ◽  
Cherine Saliba ◽  
Paolo Yammine

Non-aqueous oil-in-oil solvent evaporation technique is used for the preparation of polycaprolactone microspheres loaded with the antibiotic metronidazole by introducing different masses for the drug. The prepared microspheres are characterized by calculating drug encapsulation and drug loading percentages, measuring the corresponding particle size, performing FT-IR polymer-drug compatibility study and in vitro drug release. Moderate drug encapsulation values with a maximum of 34% are observed due to the low molecular weight of the drug. Microspheres had a particle size ranging between 130 and 280 µm with a spherical profile and porous structure. FT-IR study showed no interactions between the drug and the polymer. Drug release studies showed fast release rates for all the formulations with the slowest release for the highest drug loading. Keywords: polycaprolactone, metronidazole, targeted drug delivery, solvent evaporation.


2019 ◽  
Vol 4 (1) ◽  

Aim: The present study was designed to develop and characterize nanostructured lipid carriers (NLC) of Ofloxacin and Prednisolone for topical use in case of infections associated with inflammation. Materials and Methods: Ofloxacin was obtained as gift sample from Mankind Pharma Ltd, VillKyarta, P.O. Misserwal, Poonta Sahib, Sir Mour. H.P. Whereas Prednisolone was purchased from Yarrow chem., Mumbai. It was evaluated for its pre-formulation studies (organoleptic properties, melting point, solubility, compatibility, max. wavelength of absorption). NLCs were prepared through melt-emulsification followed by ultra-sonication technique. Further optimized batch of NLCs was incorporated into Gel. Formulated NLCs were evaluated in terms of morphological characteristics, particle size (Polydispersity Index), drug content, In-vitro drug release (using egg membrane), drug release kinetics (Ritger-Peppas diffusion method). Finally, gel containing NLCs was studied by physical characteristics, pH, viscosity, spreadability, drug content, In-vitro drug release and its kinetics. Results and Discussion: In pre-formulation study, drugs were found having the similar properties as described in Indian Pharmacopoeia (IP) and United States Pharmacopoeia (USP). SEM photomicrograph revealed that NLCs were spherical with more or less smooth surface; particle size 512.3-1703 nm and PDI- 0.399-0.742 (ofloxacin) and particle size 539.3-1736.7 nm and PDI- 0.335 - 0.711 (prednisolone);drug content was found in range of 56.7 - 75.6% for ofloxacin and 65.9 – 81.8% for prednisolone. NLC1 demonstrated maximum release rate with 83.37±1.70% and NLC8 73.96±0.53%.NLC6 was best fitted in Korsmeyer - peppas model as the regression coefficients were 0.960, 0.964, 0.977, 0.950, 0.980 & 0.987 respectively and prednisolone NLC 9 (0.953) and they were close to 1. Conclusion: In conclusion, the prepared NLCs had prolonged release effects with good potential for topical delivery of NLC based gel formulation of ofloxacin& prednisolone.


2019 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Rinku Gonekar ◽  
Mohan Lal Kori

The objective of the present study is to develop colon targeted drug delivery system using dextrin (polysaccharide) as a carrier for Azathioprine.  Microspheres containing azathioprine, dextrin and various excipients were prepared by solvent evaporation technique. The prepared microsphere were evaluated by different methods parameters like particle size,  drug entrapment efficiency, percentage yield, shape and surface morphology  and in vitro drug release study. Drug release profile was evaluated in simulated gastric, intestinal fluid and simulated colonic fluid. Best formulation was decided on the basis drug release profile in simulated gastric, intestinal fluid and simulated colonic fluid. In dextrin based microspheres, dextrin as a carrier was found to be suitable for targeting of Azathioprine for local action in the site of colon. Dextrin microspheres released 95-99% of azathioprine in simulated colonic fluid with 4% human fecal matter solution. The results of in-vitro studies of the azathioprine microspheres indicate that for colon targeting dextrin are suitable carriers to deliver the drug specifically in the colonic region. Dextrin based azathoprine microspheres showed no significance change in particle size and % residual upon storage at 5 ± 3ºC, 25 ± 2ºC/60 ± 5% RH (room temperature) and 40 ± 2ºC/75 ±5%RH humidity for three months. Keywords: azathioprine, microsphere, dextrin, colon specific drug delivery.


Sign in / Sign up

Export Citation Format

Share Document