Performance of Air-Stable Cs2SnI6 Perovskite as Electron Transport Layer in Inverted Bulk Heterojunction Solar Cell

2020 ◽  
Vol 860 ◽  
pp. 28-33
Author(s):  
Rany Khaeroni ◽  
Herman ◽  
Priastuti Wulandari

In recent years, perovskite material has been extensively studied due to its unique physical properties and promising application in the third generation of solar cells. In particular, Sn-based perovskite has been considered to replace Pb-based perovskite because of the toxic effects and it can lead to other serious problems related to the environment. Cs2SnI6 perovskite has been known to be synthesized in a simple chemical process and it can be produced on a large scale. Moreover, this material is also oxygen and moisture stable due to the high oxidation state of tin. In this study, we synthesize air-stable Cs2SnI6 perovskite by the use of the wet chemical process at room temperature. Next, we attempt to fabricate the inverted bulk heterojunction solar cells incorporated Cs2SnI6 as electron transport layer in the configuration of ITO/ZnO/Cs2SnI6/P3HT:PCBM/PEDOT:PSS/Ag to improve device performance. The Cs2SnI6 perovskite shows an Fm-3m space group with a cubic lattice parameter of 11.62Å confirmed by X-Ray Diffraction (XRD) measurement, while UV-Vis measurement indicates this type of perovskite has direct band gap ~3.1 eV. The fabricated solar cell device reveals the enhancement in current density at short circuit condition (Jsc) from 64.69 mA/cm2 to 77.02 mA/cm2 with the addition of 2.25 mg/ml Cs2SnI6 along with the enhancement of power conversion efficiency (PCE) from 7.05% to 9.75% as characterized by J-V measurement. In our case, the voltage at open circuit condition (Voc) of the device does not perform significant improvement. Besides, it is found that the solar cell devices are quite stable even after exposure in the air for six weeks after fabrication, as indicated by PCE performance.

2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 147 ◽  
Author(s):  
Mao Jiang ◽  
Qiaoli Niu ◽  
Xiao Tang ◽  
Heyi Zhang ◽  
Haowen Xu ◽  
...  

The commonly used electron transport material (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) for perovskite solar cells (PSC) with inverted planar structures suffers from properties such as poor film-forming. In this manuscript, we demonstrate a simple method to improve the film-forming properties of PCBM by doping PCBM with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as the electron transport layer (ETL), which effectively enhances the performance of CH3NH3PbI3 based solar cells. With 5 wt % F8BT in PCBM, the short circuit current (JSC) and fill factor (FF) of PSC both significantly increased from 17.21 ± 0.15 mA·cm−2 and 71.1 ± 0.07% to 19.28 ± 0.22 mA·cm−2 and 74.7 ± 0.21%, respectively, which led to a power conversion efficiency (PCE) improvement from 12.6 ± 0.24% to 15 ± 0.26%. The morphology investigation suggested that doping with F8BT facilitated the formation of a smooth and uniform ETL, which was favorable for the separation of electron-hole pairs, and therefore, an improved performance of PSC.


2019 ◽  
Vol 43 (18) ◽  
pp. 7130-7135 ◽  
Author(s):  
Xiaomeng Zhu ◽  
Jing Sun ◽  
Shuai Yuan ◽  
Ning Li ◽  
Zhiwen Qiu ◽  
...  

The solar cell with carbon QDs-doped PCBM as its electron transporting layer shows the highest PCE of 18.1%.


2018 ◽  
Vol 67 ◽  
pp. 01021 ◽  
Author(s):  
Istighfari Dzikri ◽  
Michael Hariadi ◽  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati

Research in solar cells is needed to maximize Indonesia’s vast solar potential that can reach up to 207.898 MW with an average radiation of 4.8 kWh/m2/day. Organometallic perovskite solar cells (PSCs) have gained immense attention due to their rapid increase in efficiency and compatibility with low-cost fabrication methods. Understanding the role of hole transport layer is very important to obtain highly efficient PSCs. In this work, we studied the effect of Hole Transport Layer (HTL) to the performance of perovskite solar cell. The devices with HTL exhibit substantial increase in power conversion efficiency, open circuit voltage and short circuit current compared to the device without HTL. The best performing device is PSC with CuSCN as HTL layer, namely Voc of 0.24, Isc of 1.79 mA, 0.27 FF and efficiency of 0.09%.


Solar RRL ◽  
2020 ◽  
Vol 4 (12) ◽  
pp. 2000551
Author(s):  
Muhammad Ishaq ◽  
Shuo Chen ◽  
Umar Farooq ◽  
Muhammad Azam ◽  
Hui Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document