Novel Composite Membranes Based on Polyaniline/Ionic Liquids for PEM Fuel Cells Applications

2020 ◽  
Vol 865 ◽  
pp. 55-60
Author(s):  
Ahmed Eisa ◽  
Amani Al-Othman ◽  
Mohammad Al-Sayah ◽  
Muhammad Tawalbeh

The modern development of (PEMFCs) is still faced by several obstacles such as membrane cost and performance. Perfluorosulfonic acid membranes (e.g. Nafion of DuPont) are currently the most successful in PEMFCs. PEMFCs usually operate at temperatures around 80°C and at atmospheric pressure. Higher temperature operation (T >100°C) is preferred and has several advantages including enhanced fuel cell kinetics, improved catalysts tolerance for contaminants and recovery of useful heat. However, the high-temperature operation is not permitted using Nafion membranes as they dehydrate and their proton conductivity dramatically decreases, thus, lowering the fuel cell efficiency. Therefore, this work aims at developing a Nafion-free membrane that would successfully operate at higher temperatures and with reasonable proton conductivity (preferably higher than 10-3 S/cm). In this study, novel solid proton conductors based on polyaniline (PANI) and ionic liquids (ILs) are proposed as membranes in PEMFCs. PANI-IL composite membranes are fabricated using porous polytetrafluoroethylene (PTFE) as support. The composite membrane was evaluated for its proton conductivity. The results showed a high proton conductivity range of 0.01 to 0.02 S/cm when a 3.7 wt % of the ionic liquid (IL)[1-Hexyl-3-Methylimidazolium Tricyanomethanide] was used.

2021 ◽  
Vol 53 ◽  
pp. 197-207 ◽  
Author(s):  
Isabel Vázquez-Fernández ◽  
Mohamed Raghibi ◽  
Adnane Bouzina ◽  
Laure Timperman ◽  
Janick Bigarré ◽  
...  

2009 ◽  
Vol 156 (2) ◽  
pp. B197 ◽  
Author(s):  
EunKyung Cho ◽  
Jin-Soo Park ◽  
S. S. Sekhon ◽  
Gu-Gon Park ◽  
Tae-Hyun Yang ◽  
...  

2015 ◽  
Vol 1735 ◽  
Author(s):  
Xu Liu ◽  
Xiaoyu Meng ◽  
Chuanming Shi ◽  
Jiangbei Huo ◽  
Ziqing Cai ◽  
...  

ABSTRACTGraphene oxide (GO) is one of the most attractive inorganic nanofillers in proton exchange membranes (PEMs) for its large specific surface area and high proton conductivity. The proton conductivity of GO nanosheet is known to be orders of magnitude greater than the bulk GO, thus it is essential to improve the dispersion of GO nanosheets in the PEM matrix to achieve higher conductivity. In this study, we report a facile and effective method to fabricate a GO/sulfonated poly ether ether ketone (SPEEK) composite membrane with well-dispersed GO nanosheets in SPEEK matrix by using electrospinning technique for direct methanol fuel cell application. The composite membrane exhibits improved proton conductivity, dimensional stability and methanol barrier property due to the presence of well-dispersed GOs. It is believed that the GO nanosheets can not only induce continuous channels for proton-conducting via Grotthuss mechanism, but also act as methanol barriers to hinder the methanol molecules from passing through the membrane.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3704
Author(s):  
Yaroslav L. Kobzar ◽  
Ghania Azzouz ◽  
Hashim Albadri ◽  
Jocelyne Levillain ◽  
Isabelle Dez ◽  
...  

In this work, the design and characterization of new supported ionic liquid membranes, as medium-temperature polymer electrolyte membranes for fuel-cell application, are described. These membranes were elaborated by the impregnation of porous polyimide Matrimid® with different synthesized protic ionic liquids containing polymerizable vinyl, allyl, or methacrylate groups. The ionic liquid polymerization was optimized in terms of the nature of the used (photo)initiator, its quantity, and reaction duration. The mechanical and thermal properties, as well as the proton conductivities of the supported ionic liquid membranes were analyzed in dynamic and static modes, as a function of the chemical structure of the protic ionic liquid. The obtained membranes were found to be flexible with Young’s modulus and elongation at break values were equal to 1371 MPa and 271%, respectively. Besides, these membranes exhibited high thermal stability with initial decomposition temperatures > 300 °C. In addition, the resulting supported membranes possessed good proton conductivity over a wide temperature range (from 30 to 150 °C). For example, the three-component Matrimid®/vinylimidazolium/polyvinylimidazolium trifluoromethane sulfonate membrane showed the highest proton conductivity—~5 × 10−2 mS/cm and ~0.1 mS/cm at 100 °C and 150 °C, respectively. This result makes the obtained membranes attractive for medium-temperature fuel-cell application.


Author(s):  
Rudzani Sigwadi ◽  
Touhami Mokrani ◽  
Phumlani Msomi ◽  
Fulufhelo Nemavhola

To investigate the effect of acidic nanoparticles on proton conductivity, permeability and fuel cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. The tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermal gravimetric analysis (TGA) and Scanning Electron Microscopy (SEM) were used to assess the ca-pacity of nanocomposite membrane to function in a fuel cell. The modified Nafion® membrane obtained the higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30 and 20 mm/min, the nanocomposite membranes demonstrate more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single cell methanol fuel cell, it had the highest power density of 183 m. cm-2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 732 ◽  
Author(s):  
Jorge Escorihuela ◽  
Abel García-Bernabé ◽  
Álvaro Montero ◽  
Óscar Sahuquillo ◽  
Enrique Giménez ◽  
...  

A series of proton exchange membranes based on polybenzimidazole (PBI) were prepared using the low cost ionic liquids (ILs) derived from 1-butyl-3-methylimidazolium (BMIM) bearing different anions as conductive fillers in the polymeric matrix with the aim of enhancing the proton conductivity of PBI membranes. The composite membranes prepared by casting method (containing 5 wt. % of IL) exhibited good thermal, dimensional, mechanical, and oxidative stability for fuel cell applications. The effects of anion, temperature on the proton conductivity of phosphoric acid-doped membranes were systematically investigated by electrochemical impedance spectroscopy. The PBI composite membranes containing 1-butyl-3-methylimidazolium-derived ionic liquids exhibited high proton conductivity of 0.098 S·cm−1 at 120 °C when tetrafluoroborate anion was present in the polymeric matrix. This conductivity enhancement might be attributed to the formed hydrogen-bond networks between the IL molecules and the phosphoric acid molecules distributed along the polymeric matrix.


2020 ◽  
Vol 21 (2) ◽  
pp. 632 ◽  
Author(s):  
Nur Adiera Hanna Rosli ◽  
Kee Shyuan Loh ◽  
Wai Yin Wong ◽  
Rozan Mohamad Yunus ◽  
Tian Khoon Lee ◽  
...  

Perfluorosulphonic acid-based membranes such as Nafion are widely used in fuel cell applications. However, these membranes have several drawbacks, including high expense, non-eco-friendliness, and low proton conductivity under anhydrous conditions. Biopolymer-based membranes, such as chitosan (CS), cellulose, and carrageenan, are popular. They have been introduced and are being studied as alternative materials for enhancing fuel cell performance, because they are environmentally friendly and economical. Modifications that will enhance the proton conductivity of biopolymer-based membranes have been performed. Ionic liquids, which are good electrolytes, are studied for their potential to improve the ionic conductivity and thermal stability of fuel cell applications. This review summarizes the development and evolution of CS biopolymer-based membranes and ionic liquids in fuel cell applications over the past decade. It also focuses on the improved performances of fuel cell applications using biopolymer-based membranes and ionic liquids as promising clean energy.


2020 ◽  
Vol 8 (32) ◽  
pp. 16345-16354
Author(s):  
Kannan P. Ramaiyan ◽  
Sergio Herrera ◽  
Michael J. Workman ◽  
Troy A. Semelsberger ◽  
Vladimir Atanasov ◽  
...  

Proper phosphorus precursor selection during synthesis could help produce better tin-pyrophosphate powder and composite membranes with improved fuel cell performance.


Sign in / Sign up

Export Citation Format

Share Document