Alternative Fastening Mechanism for Shear Connectors with Cold-Formed Steel Shapes Involved in Composite Sections

2020 ◽  
Vol 1003 ◽  
pp. 79-86
Author(s):  
Xavier Fernando Hurtado Amézquita ◽  
Maritzabel Molina Herrera

Over the past few decades, the use of steel-concrete composite sections has increased globally, in order to take advantage of compression strength in concrete and tensile strength in steel, ensuring its fastening through stress transfer elements denominated shear connectors. The main connection systems endorsed by the current design codes are used by applying welding as fastening mechanism to fix connectors. However, this thermal procedure produces concentration of residual stresses during cooling process, and risk of perforation in Cold-Formed Steel sections (CFS), affecting the behavior efficiency of the composite sections. In this research, self-drilling screws are proposed as an alternative mechanical system for connectors fastening. An experimental program was carried out to validate capacity and performance of the system, through Full-Scale Beam Tests. According to results, self-drilling screws are a viable alternative to be used as fastening mechanism in shear connectors for CFS and concrete composite sections. Composite system achieved to develop full capacity, even in inelastic range, without disconnection between materials. Self-drilling screws remained fixed on steel shapes without mechanical damage, allowing greater deformations, than structural service conditions.

2021 ◽  
Vol 28 (4) ◽  
pp. 30-41
Author(s):  
Lech Rowinski ◽  
Maciej Kaczmarczyk

Abstract The goal of the project described is to replace the existing propulsion system of a small underwater vehicle with a solution less prone to mechanical damage and ensuring a lower risk of the entanglement of fibrous objects suspended in the body of water. Four typical marine screws are utilised in the current design of the vehicle. One possible solution of the problem is the application of waterjet propulsors located inside the body of the vehicle instead. The general condition of the application of the new solution was to secure at least the same motion control capabilities of the vehicle while the basic capability is its propulsion effectiveness at the required speed. Specific features of the considered waterjet propulsor, when compared with their application in surface vessel propulsion, are the lack of the head losses and the low significance of cavitation issues. One of the difficulties in the considered case is the small diameter of the propulsor in comparison to commercially available waterjet units, which have diameters between 0.1 [m] and 1.0 [m]. There is very little data regarding the design and performance of devices in the 0.02 to 0.05 [m] range. Methods utilised to forecast the performance of the new propulsion system are presented and results compared. These were semi-empirical calculations, numerical calculations and tests of real devices. The algorithm that is based on semi-empirical calculations is of particular interest while it offers possibility quick assessment of performance of a propulsor composed of several well defined components. The results indicate the feasibility of modification of the propulsion system for the considered vehicle if all the existing circumstances are taken into account.


2013 ◽  
Vol 351-352 ◽  
pp. 427-433 ◽  
Author(s):  
S.O. Bamaga ◽  
M.Md. Tahir

Introducing low cost housing is one of the challenges face civil engineers now-days. Using lightweight construction materials i.e. cold formed steel sections is an alternate solution to overcome the challenge. In this study, a lightweight composite beam was introduced. It consists of cold formed steel section and profiled concrete slab. Experimental push tests were conducted to investigate the ductility and strength capacities of new and innovative shear connectors. The shear connectors were easy to form and give advantages to speed up the fabrication process of the proposed composite beam. The shear connectors showed large deformation and strength capacities. It is concluded that the proposed shear connectors could be used for lightweight composite beams.


2021 ◽  
Vol 164 ◽  
pp. 107831
Author(s):  
Mahmoud Hosseinpour ◽  
Mehran Zeynalian ◽  
Abdoreza Ataei ◽  
Maryam Daei

1984 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert Loov

Load tests were carried out on 36 stub column samples of cold-formed steel studs having 38.1 mm wide × 44.5 mm long holes punched through their webs, steel thicknesses of 1.21–2.01 mm, and overall section depths of 63–204 mm. Based on these tests a best-fit equation for the effective width of the unstiffened portion of the web beside the holes has been developed. Suggested design equations have been proposed. The test results support the present equation for the average yield stress [Formula: see text] in Canadian Standards Association Standard S136-1974 but the present code equations for unstiffened plates are unduly conservative when applied to the design of the web adjacent to openings of the size considered.


Author(s):  
Majahar M. Baraskar ◽  
Pranil Shetake ◽  
Prof. V. M Bogar ◽  
Dr. Y. M Ghugal

Steel is used in construction industry due to its hardness and tensile strength. Cold formed steel is type of steel which is manufactured at lower temperature. Cold form steel became more popular in twentieth century in construction industry due to its high strength to weight ratio and post-buckling strength. The purpose of this study is to study the behavior of cold-formed steel sections of different shapes but of same cross sectional area for compressive loading. Effect of lips within same cross sectional area, effect of perforation and shape stiffener is evaluated on different sections as channel section, Z section and hat section. Eigen value buckling analysis was carried out to on twelve different models to obtain the buckling load and failure pattern. ANSYS WORKBENCH software was used for numerical simulation of sections. I.S. 801:1975 has been taken under consideration wherever required. Based upon the results, optimum section in each of cases as with lips, without lips and perforated amongst all three sections is suggested. Effect of shape stiffeners provided by previous researcher P. Manikandan on solid sections is evaluated to check its suitability with perforated sections.


2018 ◽  
Vol 1146 ◽  
pp. 142-151
Author(s):  
Viorel Ungureanu ◽  
Ioan Both ◽  
Mircea Burca ◽  
Ştefan Benzar ◽  
Thai Hoang Nguyen ◽  
...  

Within the WELLFORMED research project, ongoing at the CEMSIG Research Center of the Politehnica University of Timisoara, a new technological solution was proposed for built-up beams made of corrugated steel sheets for the web and thin-walled cold-formed steel profiles for the flanges, connected by spot welding. The research project integrates an extensive experimental program on such beams, using full scale specimens, to demonstrate the feasibility of the proposed solutions and to assess their performance, followed by numerical simulations to characterize and optimize the connecting details. The present paper presents the results of a large experimental program, on small specimens subjected to shear, consisting of two or three layers of steel sheet connected by spot welding.


2021 ◽  
Author(s):  
S. Karthikeyan ◽  
K. M. Jeevananthan ◽  
T. Karis Prabakar ◽  
R. Harini ◽  
S. P. Murali Kannan

2019 ◽  
Vol 11 (8) ◽  
pp. 2200 ◽  
Author(s):  
Gerardo Araya-Letelier ◽  
Pablo Maturana ◽  
Miguel Carrasco ◽  
Federico Carlos Antico ◽  
María Soledad Gómez

Commercial polypropylene fibers are incorporated as reinforcement of cement-based materials to improve their mechanical and damage performances related to properties such as tensile and flexural strength, toughness, spalling and impact resistance, delay formation of cracks and reducing crack widths. Yet, the production of these polypropylene fibers generates economic costs and environmental impacts and, therefore, the use of alternative and more sustainable fibers has become more popular in the research materials community. This paper addresses the characterization of recycled polypropylene fibers (RPFs) obtained from discarded domestic plastic sweeps, whose morphological, physical and mechanical properties are provided in order to assess their implementation as fiber-reinforcement in cement-based mortars. An experimental program addressing the incorporation of RPFs on the mechanical-damage performance of mortars, including a sensitivity analysis on the volumes and lengths of fiber, is developed. Using analysis of variance, this paper shows that RPFs statistically enhance flexural toughness and impact strength for high dosages and long fiber lengths. On the contrary, the latter properties are not statistically modified by the incorporation of low dosages and short lengths of RPFs, but still in these cases the incorporation of RPFs in mortars have the positive environmental impact of waste encapsulation. In the case of average compressive and flexural strength of mortars, these properties are not statistically modified when adding RPFs.


Sign in / Sign up

Export Citation Format

Share Document