Inhibitory Action of Persian Pyrifoliabark Extract against Corrosion of SAE 1020 Carbon Steel in Sodium Chloride Medium

2020 ◽  
Vol 1012 ◽  
pp. 390-394
Author(s):  
C. Vieira ◽  
D. Borges ◽  
D.C.S. Oliszeski ◽  
L.F.G. Larsson ◽  
E.P. Banczek

Carbon steel is one of the most commonly used alloys in industrial applications due to its physicochemical properties and low cost. However, the use of this metal material may become limited due to its vulnerability to corrosion. Thus, it is necessary to use methods that inhibit corrosion. Organic compounds with heteroatoms possess the characteristic of inhibiting corrosion by forming a protective film. The corrosion protection of SAE 1020 carbon steel, promoted by the aqueous extract of Persea pyrifolia (PP) bark, was evaluated in this work at extract concentrations of 5% and 10% v/v, in order to replace an inhibitor of synthetic origin with an ecologically benign inhibitor. Plant extracts are generally inexpensive and can be obtained through simple extraction processes. The objective of this work was to study the use of PP peel extract as a carbon steel corrosion inhibitor (SAE 1020). The electrochemical response was determined by measurements including electrochemical impedance spectroscopy (EIS) and anodic potentiodynamic polarization (PPA) in a 0.5 M sodium chloride medium. The samples were characterized by optical microscopy to evaluate the type of corrosion.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
J. C. Valle-Quitana ◽  
G. F. Dominguez-Patiño ◽  
J. G. Gonzalez-Rodriguez

Phthalocyanine blue dye has been investigated as a carbon steel corrosion inhibitor in 0.5 M sulfuric acid by using polarization curves, electrochemical impedance spectroscopy, and gravimetric tests. Dye concentrations included 0, 100, 200, 400, 600, 800, and 1000 ppm, whereas testing temperatures were 25, 40, and 60°C. Results indicated that phtalocyanine blue is a good corrosion inhibitor with its efficiency increasing with the concentration up to 40°C, but it increases at 60°C. Inhibitor improves the passive film properties and it forms an adherent, compact, protective film, acting, therefore, as an anodic-type inhibitor. At 25 and 40°C the corrosion process was under charge transfer, whereas at 60°C the adsorption/desorption of some species from the metal surface controlled the corrosion process.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
G. Chan-Rosado ◽  
M. A. Pech-Canul

The inhibition effect of sodium glutarate towards corrosion of carbon steel in neutral 0.02 M NaCl solution was investigated with potentiodynamic polarization and electrochemical impedance measurements. Results of electrochemical measurements revealed a poor inhibitive action for low concentrations (1 mM and 5 mM) and a significant improvement in efficiency for concentrations of 32 mM or higher. The protective film exhibited excellent stability in the temperature range 22°C–55°C. Full chemical passivation was accomplished and analysis of the impedance spectra for the high concentrations of glutarate was consistent with the inhibition mechanism which assumes that the carboxylates support the passivation of carbon steel in aerated solutions by plugging the defect sites and that the passivation process is enhanced by adsorption of the carboxylates on the oxide-covered surface. Such mechanism was confirmed by the XPS analysis.


2018 ◽  
Vol 149 ◽  
pp. 01050
Author(s):  
Mohammed Hassoune ◽  
Abdelillah Bezzar ◽  
Latéfa Sail ◽  
Fouad Ghomari

The inhibition of carbon steel corrosion in neutral sodium chloride solution by N,N'- Dimethylaminoethanol (DMEA), at different temperatures, was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results obtained confirm that DMEA is a good organic corrosion inhibitor for carbon steel in 0.5M of NaCl (concentration encountered in the Mediterranean seawater), over the whole range of temperatures studied. The inhibition efficiency (IE%) increases with increasing DMEA concentration; it reaches highest value for a concentration around 0.125 mol.L-1. Potentiodynamic polarization data show that, the compound studied in this research predominantly act as anodic-type inhibitor. The EIS study reveals that the addition of DMEA decreases the corrosion rate of carbon steel in neutral sodium chloride solution, due to the fact that the inhibitor molecules are strongly adsorbed on the active sites following Langmuir isotherm, thus leading to the formation of a stable protective film on the steel surface which is able to keep the metal/solution interface in a passive state. Furthermore, the values of the activation parameters, i.e. ΔHa and Ea obtained in this study indicate that the adsorption process of DMEA is endothermic and could be mainly attributed to chemisorption, respectively.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 890
Author(s):  
Ghadah M. Al-Senani

This paper studies the use of zinc oxide nanoparticles (ZnO-NPs) synthesized using an extract of Convolvulus arvensis leaf and expired ZnCl2, as efficient inhibitors of carbon steel corrosion in a 1 M HCl solution. The synthesized ZnO-NPs were characterized by Fourier-transform infrared (FTIR) and UV-Vis spectroscopy analysis. The corrosion inhibition of carbon steel in 1 M HCl was also investigated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and the determination of weight loss. The results show that the efficiency of the prevention increased when the concentration of ZnO-NPs was increased to 91%, and that the inhibition efficiency was still high (more than 89%) despite decreasing at high temperatures, acting as a mixed-type inhibitor. A sample of carbon steel with a protective layer of inhibitor on top was observed during immersion in 1 M HCl for 20 h; an increase in the charge transfer resistance (Rct) and stability of the inhibitor could be observed after 6 h. Adsorption isotherm models demonstrated that the inhibitor adsorption mechanism on the carbon steel surface followed Langmuir rather than Freundlich and Temkin behaviors. The thermodynamic parameters showed that the adsorption process is one of mixed, spontaneous, and exothermic adsorption. The results illustrate that the ZnO-NPs were a strong inhibitor of carbon steel corrosion in acid medium. The results of scanning electron microscopy (SEM) images showed that the ZnO-NPs formed a good protective film on the carbon steel surface.


Author(s):  
Ghadah Al-Senani

This paper studies the use of zinc oxide nanoparticles (ZnO-NPs) synthesized using an extract of convolvulus leaves and expired ZnCl2, as an efficient inhibitor for carbon steel corrosion in 1M HCl solution. ZnO-NPs are characterized by Fourier-transform infrared spectrophotometer (FTIR) and UV–Vis analysis. The technique of weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) has also been used to investigate the prevention of carbon steel corrosion in 1M HCl. The results showed that the efficiency of restraint increased when the concentration of ZnO-NPs was raised to 91% and that the inhibition efficiency is still high despite its decrease at high temperature, and it acts as a mixed-type inhibitor A sample of carbon steel with the protective inhibitor layer on top was immersed for 20 hours and observed; an increase in the charge transfer resistance (Rct) and stability of the inhibitor was noticed after 6 hours. Adsorption isotherm models demonstrated that the inhibitor adsorption mechanism on the carbon steel surface followed Langmuir, more than Freundlich and Temkin, behavior. The thermodynamic parameters showed that the adsorption process is a mixed adsorption, spontaneous, and exothermic. The results illustrated that the acid medium was a strong inhibitor of carbon steel corrosion. Scanning electron microscope (SEM) showed that the ZnO-NPs formed a good protective film on the carbon steel surface.


2018 ◽  
Vol 34 (6) ◽  
pp. 3016-3029 ◽  
Author(s):  
A. El-Yaktini ◽  
A. Lachiri ◽  
M. El-Faydy ◽  
F. Benhiba ◽  
H. Zarrok ◽  
...  

The inhibition ability of a new Azomethine derivatives containing the 8-hydroxyquinoline (BDHQ and MDHQ) towards carbon steel corrosion in HCl solution was studied at various concentrations and temperatures using weight loss, polarization curves and electrochemical impedance spectroscopy (EIS) methods. The experimental results reveal that BDHQ and MDHQ are efficient mixed type corrosion inhibitors, and their inhibition efficiencies increase with increasing concentration. The adsorption of these inhibitors on mild steel surface obeys Langmuir isotherm. Quantum chemical parameters are calculated using the Density Functional Theory method (DFT) and Monte Carlo simulations. Correlation between theoretical and experimental results is discussed.


2020 ◽  
Vol 318 ◽  
pp. 01040
Author(s):  
Dimitrios I. Zagkliveris ◽  
Azarias Mavropoulos ◽  
Efstathios Ntovinos ◽  
Georgios K. Triantafyllidis

A large variety of protective coating is being used in industrial applications to improve the resistance of the metallic substrates against corrosion. The pack-cementation method for boronizing and borochromizing is effective to produce extremely hard and corrosion resistant thick coatings and, additionally, is a low-cost and simple technique. In the present study, AISI 4140 steel specimens underwent boronizing and afterwards chromizing by the pack-cementation method using B4C as boron source and Fe-Cr as chromium source, respectively. In both treatments the appropriate activators were used. After chromizing the boronized substrate, a mixed boride phase FeCrB was formed, as it was confirmed by X-ray Diffractometry (XRD). The boronized and the borochromized specimens were subjected to Electrochemical Impedance Spectroscopy (EIS). From the analysis of the frequency response of the coating systems (Bode and Nyquist display), the conclusion that the borochromized specimens were significantly more corrosion resistant was extracted. Finally, data of optical and electron microscopy contribute to the validity of the conclusions.


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3909-3915
Author(s):  
Héctor M. Barbosa Cásarez ◽  
Araceli Espinoza Vázquez ◽  
Francisco J. Rodríguez-Gomez

AbstractPhenylcoumarin glucoside (4-PC) is a compound extracted from the plant Hintona latiflora and was studied as inhibitor for AISI 1018 steel corrosion in 3% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, which may find application as eco-friendly corrosion inhibitors. The 4-PC provides inhibitor properties that protect AISI 1018 low carbon steel against corrosion at low concentrations (5 ppm) obtained by EIS. Polarization studies showed that the inhibitor was of mixed type. The inhibition efficiency by the two electrochemical techniques shows similar results. The inhibitor adsorption was demonstrated to be a combined process (physisorption and chemisorption) according to the Langmuir isotherm.


2019 ◽  
Vol 35 (2) ◽  
pp. 678-683
Author(s):  
Sini Varghese Cheruvathur ◽  
Joby Thomas Kakkassery ◽  
Vinod Raphael Palayoor ◽  
Binsi M. Paulson ◽  
Ragi Kooliyat

The corrosion protection efficacy of electrochemically synthesized poly(2-aminobenzenesulphonic acid) (P2ABSA) on carbon steel in 1.0 M HCl was investigated by electrochemical impedance spectroscopy, Tafel polarisation, scanning electron microscopy (SEM) and FT-IR spectral studies. The polymeric coating was prepared on the steel surface using cyclic voltammetry. Investigations established that P2ABSA effectively prevent the metal dissolution in HCl medium. Polarisation studies revealed that this polymer hinder both anodic and cathodic process of corrosion appreciably. The structures of the chemically and electrochemically synthesised polymers were compared using IR spectroscopy. Morphology of the steel surface confirmed the intact response of P2ABSA on steel surface treated with HCl.


Sign in / Sign up

Export Citation Format

Share Document