ISRN Corrosion
Latest Publications


TOTAL DOCUMENTS

45
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

Published By Hindawi (International Scholarly Research Network)

2090-8903

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Akshya Kumar Guin ◽  
Suryakanta Nayak ◽  
Manish Kumar Bhadu ◽  
Veena Singh ◽  
Tapan Kumar Rout

Polymer based nanocapsule was developed using core-cell approach, where the core material was methyl diphenyl diisocyanate and the cell material was urea-formaldehyde. The synthesized capsules of 100 to 800 nm size were incorporated into sol-gel matrix to prepare a final coating for steel protection. This coating was found protecting the steel at the damage or crack locations in 3.5% NaCl solution. SEM micrographs confirmed healing of the coating at the damage or crack points.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
C. Mary Anbarasi ◽  
Susai Rajendran

Inhibition of corrosion of carbon steel in dam water by hexanesulphonic acid as its sodium salt C6H13SO3Na (SHXS) in the absence and presence of a bivalent cation zinc ion (Zn2þ) has been investigated using weight loss method. Results of weight loss method indicate that inhibition efficiency (IE) increased with increase of inhibitor concentration. Polarization study reveals that SHXS-Zn2+ system controls the cathodic reaction predominantly. AC impedance spectra reveal that a protective film is formed on the metal surface. The nature of the metal surface has been analysed by Fourier Transform Infrared Spectroscopy (FTIR) and Atomic Force Microscopy (AFM).


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
M. P. Chakravarthy ◽  
K. N. Mohana

The present investigation includes the study of corrosion inhibition effect of N-(1H-Indol-3-ylmethylene)-nicotinamide (IMN) and N-(3,4,5-trimethoxy-benzylidene)-nicotinamide (TMN) on mild steel in 0.5 M HCl by mass loss and electrochemical measurements. The obtained results showed that inhibition efficiency increased with the increasing concentration of inhibitors and decreased with increase in temperature and immersion time. Potentiodynamic polarization curves indicate that both IMN and TMN were acting as mixed type of inhibitors. Langmuir adsorption isotherm model was employed to determine the equilibrium of adsorption for inhibiting process in both inhibitors. Nyquist plots revealed that, as the concentration of the inhibitors increases, double layer capacitance (Cdl) and corrosion current (icorr) decreases, while polarization resistance (Rp) increases. Various thermodynamic parameters for the adsorption of inhibitors on mild steel were computed and discussed. The passive film formed on the metal surface was characterized by FTIR, EDX, and SEM.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. A. Afifi

This paper is aimed at investigating the corrosion behavior of Pure and Zinc-graphite particles with percentage of 1, 3, and 5%, respectively. The composites were fabricated by powder metallurgy method. Corrosion tests were performed according to ASTM standard. Corrosion rate was calculated and it is found that in all cases the corrosion rate was decreasing with the increase in exposure time. Meanwhile, the microstructure of composites was imaged and analyzed using optical microscope and scanning electron microscope. It is observed that the best corrosion resistance was zinc with 1% Graphite while Zinc with 3% and 5% Graphite composites did not enhance the corrosion resistance comparing to pure Zinc.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Rajasekar Aruliah ◽  
Yen-Peng Ting

An analysis of a culturable corrosive bacterial community in water samples from a cooling tower was performed using traditional cultivation techniques and its identification based on 16S rRNA gene sequence. Seven aerobic bacterial species were identified: Pseudomonas putida ARTYP1, Pseudomonas aeruginosa ARTYP2, Massilia timonae ARTYP3, Massilia albidiflava ARTYP4, Pseudomonas mosselii ARTYP5, Massilia sp. ARTYP6, and Pseudomonas sp. ARTYP7. Although some of these species have commonly been observed and reported in biocorrosion studies, the genus Massilia is identified for the first time in water from a cooling tower. The biocorrosion behaviour of copper metal by the new species Massilia timonae ARTYP3 was selected for further investigation using a weight loss method, as well as electrochemical and surface analysis techniques (SEM, AFM, and FTIR). In contrast with an uninoculated system, thin bacterial biofilms and pitting corrosion were observed on the copper metal surface in the presence of M. timonae. The use of a biocide, bronopol, inhibited the formation of biofilm and pitting corrosion on the copper metal surface.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
J. C. Valle-Quitana ◽  
G. F. Dominguez-Patiño ◽  
J. G. Gonzalez-Rodriguez

Phthalocyanine blue dye has been investigated as a carbon steel corrosion inhibitor in 0.5 M sulfuric acid by using polarization curves, electrochemical impedance spectroscopy, and gravimetric tests. Dye concentrations included 0, 100, 200, 400, 600, 800, and 1000 ppm, whereas testing temperatures were 25, 40, and 60°C. Results indicated that phtalocyanine blue is a good corrosion inhibitor with its efficiency increasing with the concentration up to 40°C, but it increases at 60°C. Inhibitor improves the passive film properties and it forms an adherent, compact, protective film, acting, therefore, as an anodic-type inhibitor. At 25 and 40°C the corrosion process was under charge transfer, whereas at 60°C the adsorption/desorption of some species from the metal surface controlled the corrosion process.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
N. Kumar ◽  
A. Jyothirmayi ◽  
K. R. C. Soma Raju ◽  
V. Uma ◽  
R. Subasri
Keyword(s):  
Sol Gel ◽  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Benjamin Valdez Salas ◽  
Michael Schorr Wiener ◽  
Roumen Zlatev Koytchev ◽  
Gustavo López Badilla ◽  
Rogelio Ramos Irigoyen ◽  
...  

Hydrogen sulphide (H2S) is considered one of the most corrosive atmospheric pollutants. It is a weak, diprotic, reducing acid, readily soluble in water and dispersed into the air by winds when emitted from natural, industrial, and anthropogenic sources. It is a pollutant with a high level of toxicity impairing human health and the environment quality. It attacks copper forming thin films of metallic sulphides or dendrite whiskers, which are cathodic to the metal substrate, enhancing corrosion. H2S is actively involved in microbially influenced corrosion (MIC) which develops in water, involving sulphur based bacteria, in oxidizing and reducing chemical reactions. H2S is found in concentrated geothermal brines, in the atmosphere of geothermal fields, and in municipal sewage systems. Other active atmospheric pollutants include SOX, NOX, and CO. This investigation reports on the effects of H2S on copper in microelectronic components of equipment and devices, with the formation of nonconductive films that lead to electrical failures.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ramana M. Pidaparti ◽  
Brian Hinderliter ◽  
Darshan Maskey

Corrosion surface damage in the form of pitting and microcracks is observed in many systems and affects the integrity of steel structures in nuclear, civil, and industrial engineering. In order to gain a better understanding and develop nondestructive and automatic detection/assessment of corrosion damage and its growth, an image analysis based on texture using wavelet transforms and color features was carried out. Experiments were conducted on steel 304 panels under three different electrolyte solutions, and periodic scans were used to obtain the images for analysis over time. The results obtained from the image analysis are presented to illustrate the metrics which best characterize early stage corrosion damage growth behavior. The results obtained indicate that textural features in combination with color features are more effective and may be used for correlating service/failure conditions based on corrosion morphology.


Sign in / Sign up

Export Citation Format

Share Document