Energy Absorption of Additively Manufactured Porous Metals with Disordered Cells

2021 ◽  
Vol 1016 ◽  
pp. 183-187
Author(s):  
Koichi Kitazono ◽  
Shiyue Guo ◽  
Ke Zhu ◽  
Takuya Hamaguchi ◽  
Yuta Fujimori

Lightweight porous metals are focused on as energy absorbing materials for automobiles. Open-cell porous metals were manufactured through additive manufacturing process. Their cell structures were designed based on Voronoi diagrams using a commercial 3D-CAD software. Both ordered and disordered cell structures with the same porosities were successfully designed in this study. Compression tests and explicit finite element analysis revealed heterogeneous deformation behaviors in ordered porous metals. On the other hand, the porous metals with disordered cell structure showed relatively isotropic and uniform deformation, which is suitable as energy absorbing materials. Controlling the disordered cell structure designed by 3D-Voronoi diagram enables to develop the advanced porous metals having various mechanical properties.

1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 881
Author(s):  
Adrian Dubicki ◽  
Izabela Zglobicka ◽  
Krzysztof J. Kurzydłowski

Numerous engineering applications require lightweight structures with excellent absorption capacity. The problem of obtaining such structures may be solved by nature and especially biological structures with such properties. The paper concerns an attempt to develop a new energy-absorbing material using a biomimetic approach. The lightweight structure investigated here is mimicking geometry of diatom shells, which are known to be optimized by nature in terms of the resistance to mechanical loading. The structures mimicking frustule of diatoms, retaining the similarity with the natural shell, were 3D printed and subjected to compression tests. As required, the bio-inspired structure deformed continuously with the increase in deformation force. Finite element analysis (FEA) was carried out to gain insight into the mechanism of damage of the samples mimicking diatoms shells. The experimental results showed a good agreement with the numerical results. The results are discussed in the context of further investigations which need to be conducted as well as possible applications in the energy absorbing structures.


2004 ◽  
Vol 01 (02) ◽  
pp. 309-328
Author(s):  
R. J. HO ◽  
S. A. MEGUID ◽  
R. G. SAUVÉ

This paper presents a unified novel technique for enforcing nonlinear beam-to-shell, beam-to-solid, and shell-to-solid constraints in explicit finite element formulations. The limitations of classical multi-point constraint approaches are examined at length, particularly in the context of explicit solution schemes. Novel formulation of a generalized constraint method that ensures proper element coupling is then presented, and its computer implementation in explicit integration algorithms is discussed. Crucial in this regard is the accurate and efficient representation of finite rotations, accomplished using an incremental rotation tensor. The results of some illustrative test cases show the accuracy and robustness of the newly developed algorithm for a wide range of deformation, including that in which large rotations are encountered. When compared to existing works, the salient features of the current method are in evidence.


1999 ◽  
Author(s):  
Ronald A. Mayville ◽  
Randolph P. Hammond ◽  
Kent N. Johnson

Abstract This paper presents the results of an experimental study to establish the strength and energy absorption capability of cab car rail vehicle corner structures built to current strength requirements and for structures modified to carry higher loads and absorb more energy. We reviewed current structures and designed an end beam test element — the most common way of meeting current requirements — whose strength in the baseline state was at least 150,000 lbf. This design was then modified to provide a strength of over 400,000 lbf. The designs, which included consideration of the deformation and fracture response under impact loading, were carried out using conventional structural engineering methods and explicit finite element analysis.


2021 ◽  
Author(s):  
Arsalan Majlesi ◽  
Reza Nasouri ◽  
Adnan Shahriar ◽  
David Amori ◽  
Arturo Montoya ◽  
...  

2020 ◽  
Vol 308 ◽  
pp. 04005 ◽  
Author(s):  
Daesung Kim ◽  
Hyunho Shin

The minimum required distance of the strain gauge on the transmitted bar of the split Hopkinson bar has been determined from the position of a metallic specimen via an explicit finite element analysis. The minimum required distance was determined when the strain-time profiles at r = 0, 0.5Ro and 1.0Ro, were coincident (r is the radial position and Ro is the radius of the bar.). The determined minimum required distance, f(x), is presented as a function of the relative specimen diameter to that of the bar (x = D/D0): j(x) = - 0.9385.x3 + 0.6624.x2 - 0.7459.x + 1.4478 (0.1 ≤ x ≤ 0.9). This result demonstrates the Saint-Venant's principle of rapid dissipation of localized stress in transient loading. The result will be useful for the design/modification of the pseudo-one-dimensional impact instruments that utilise a stress pulse transmitted through the specimen. The result will also allow one to avoid unnecessarily remote strain gage position from the specimen.


Sign in / Sign up

Export Citation Format

Share Document