High Cycle Fatigue Behaviour of Cu/Sn Intermetallic Compounds Prepared by Transient Liquid Phase Bonding Process

2021 ◽  
Vol 1016 ◽  
pp. 268-273
Author(s):  
Agnieszka Betzwar Kotas ◽  
Golta Khatibi ◽  
Farzad Khodabakhshi ◽  
Andreas Steiger-Thrisfeld

Transient liquid phase (TLP) bonds using Cu-Sn system have been suggested as high strength and temperature resistant joints for power electronics applications. While the physical and mechanical properties of these joints has been investigated to some extent, studies on fatigue properties and long term reliability of TLP joints are scarce. In this work TLP bonding was performed to produce thin Cu-Sn intermetallic joints by using Cu and 97Sn3Cu solder alloy as interlayer. Different processing conditions resulted in three types of thin joints consisting of three phases (Cu3Sn/Cu6Sn5/solder remnants), two phases (Cu3Sn/Cu6Sn5) and a single phase (Cu3Sn) with an overall thickness of ≤ 20 μm. The shear strength of the TLP joint containing one or two high melting point IMC layers showed a significant temperature resistance up to 200°C. Fatigue studies of TLP joints were conducted by using a 3-point-cyclic bending test system operating at 20 kHz. The highest fatigue resistance was obtained for the single-phase Cu3Sn joints with superior shear and flexural resistance. The two phase joints (Cu3Sn/Cu6Sn5) showed a slightly lower lifetime than the three phase system containing IMCs and residual solder. Fracture surfaces analysis in correlation with static and cyclic mechanical properties, provided insight into the failure mechanism of the Cu-Sn TLP joints.

2008 ◽  
Vol 1128 ◽  
Author(s):  
Haruyuki Inui ◽  
Katsushi Tanaka ◽  
Kyosuke Kishida ◽  
Norihiko L. Okamoto ◽  
Takashi Oohashi

AbstractSingle-crystal elastic constants of Co3(Al,W) with the cubic L12 structure have been experimentally measured by resonance ultrasound spectroscopy at liquid helium temperature. The values of all the three independent single-crystal elastic constants and polycrystalline elastic constants of Co3(Al,W) experimentally determined are 15~25% larger than those of Ni3(Al,Ta) but are considerably smaller than those previously reported. Two-phase microstructures with cuboidal L12 precipitates being well aligned parallel to <100> and well faceted parallel to {100} are expected to form very easily in Co-base superalloys because of the large value of E111/E100 and cij of Co3(Al,W). This is indeed confirmed by experiment. Values of yield stress obtained for both [001] and [¯123] orientations of L12/fcc two-phase single crystals moderately decrease with the increase in temperature up to 800°C and then decrease rapidly with temperature above 800°C without any anomaly in yield stress. Slip on {111} is observed to occur for both orientations in the whole temperature range investigated.


2012 ◽  
Vol 217-219 ◽  
pp. 1917-1920
Author(s):  
Xin Geng Li ◽  
Xue Gang Wang ◽  
Feng Jie Yan ◽  
Hong Wang ◽  
Xiao Ming Wang

An aluminum base interlayer was used for transient liquid phase bonding of pure aluminum under argon flux. The bonding was carried out at 595°C for 2 minutes under 7MPa. Microstructure of the joint was studied with SEM and EDX, and the mechanical properties were analyzed by tensile test and bending test. A homogenous bonding zone is observed in the joint. The defects in the joint are silicon oxides and voids. The tensile strength of the joint is 190MPa, and no failure occurs when the joint is bent to 180°. This indicates that TLP bonding can produce a strong and ductile Aluminum joint, which is equivalent to the base metal.


2010 ◽  
Vol 638-642 ◽  
pp. 1342-1347 ◽  
Author(s):  
Haruyuki Inui ◽  
Takashi Oohashi ◽  
Norihiko L. Okamoto ◽  
Kyosuke Kishida ◽  
Katsushi Tanaka

The values of all the three independent single-crystal elastic constants and polycrystalline elastic constants of Co3(Al,W) experimentally determined by resonance ultrasound spectroscopy at liquid helium temperature are 15~25% larger than those of Ni3(Al,Ta) but are considerably smaller than those previously calculated. Because of the large value of E111/E100 and cij of Co3(Al,W), two-phase microstructures with cuboidal L12 precipitates well aligned parallel to <100> and well faceted parallel to {100} are expected to form very easily in Co-base alloys, as confirmed indeed by experiment. Values of yield stress obtained for [001]-oriented L12/fcc two-phase single crystals moderately decrease with the increase in temperature up to 800°C and then decrease rapidly with temperature above 800°C without any anomaly in yield stress.


1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


2012 ◽  
Vol 445 ◽  
pp. 195-200
Author(s):  
Murat Aydin ◽  
Yakup Heyal

The mechanical properties mainly tensile properties, impact toughness and high-cycle fatigue properties, of two-phase Al-20Zn alloy subjected to severe plastic deformation (SPD) via equal-channel angular extrusion (ECAE) using route A up to 2 passes were studied. The ECAE almost completely eliminated as-cast dendritic microstructure including casting defects such as micro porosities. A refined microstructure consisting of elongated micro constituents, α and α+η eutectic phases, formed after ECAE via route A. As a result of this microstructural change, mechanical properties mainly the impact toughness and fatigue performance of the as-cast Al-20Zn alloy increased significantly through the ECAE. The rates of increase in fatigue endurance limit are approximately 74 % after one pass and 89 % after two passes while the increase in impact toughness is 122 %. Also the yield and tensile strengths of the alloy increase with ECAE. However, no considerable change occurred in hardness and percentage elongation of the alloy. It was also observed that the ECAE changed the nature of the fatigue fracture characteristics of the as-cast Al-20Zn alloy.


2012 ◽  
Vol 506 ◽  
pp. 57-60 ◽  
Author(s):  
M. Ebrahimi ◽  
Naruporn Monmaturapoj ◽  
S. Suttapreyasri ◽  
P. Pripatnanont

The biphasic calcium phosphate (BCP) concept was introduced to overcome disadvantages of single phase biomaterials. In this study, we prepared BCP from nanoHA and β-TCP that were synthesized via a solid state reaction. Three different ratios of pure BCP and collagen-based BCP scaffolds (%HA/%β-TCP; 30/70, 40/60 and 50/50) were produced using a polymeric sponge method. Physical and mechanical properties of all materials and scaffolds were investigated. XRD pattern proved the purity of each HA, β-TCP and BCP. SEM showed overall distribution of macropores (80-200 µm) with appropriate interconnected porosities. Total porosity of pure BCP (93% ± 2) was found to be higher than collagen-based BCP (85%± 3). It was observed that dimensional shrinkage of larger scaffold (39% ± 4) is lower than smaller one (42% ± 5) and scaffolds with higher HA (50%) ratio experienced greater shrinkage than those with higher β-TCP (70%) ratio (45% ±3 and 36% ±1 respectively). Mechanical properties of both groups tend to be very low and collagen coating had no influence on mechanical behavior. Further studies may improve the physical properties of these composite BCP.


Sign in / Sign up

Export Citation Format

Share Document