Minimization of Internal Shrinkage Defects in Cast Parts Using 5VA Powder Solder Application

2021 ◽  
Vol 1031 ◽  
pp. 184-189
Author(s):  
Vladislav Gerashchenko ◽  
Lev Oborin ◽  
Nikolay Testoyedov ◽  
Igor Kovalev

The article presents a method for eliminating the crystallization of thermal nodes and shrinkage defects in the form of micro-friable cavities. The method of soldering on castings from steel grades VNL-1 and VNL-6 using 5VA powder solder has been investigated. Also, the optimal soldering modes were determined, the effects of soldering modes on the properties of the base material and the soldered joint were studied, the corrosion resistance was investigated, the corrosion resistance of the soldered joints in corrosive environments. The conducted studies of sealing by soldering cast parts with microdefects lead to the following results: increased corrosion resistance; ensuring increased tightness; improving the presentation; elimination of surface microdefects.

2014 ◽  
Vol 620 ◽  
pp. 453-456
Author(s):  
Shun Myung Shin ◽  
Jei Pil Wang

Stainless steel materials (FeCr and FeCrNi-based alloys) are employed in a wide range of modern applications due to their ability to withstand corrosive environments while maintaining good mechanical properties. Their corrosion resistance originates from Cr-rich oxide layer which serves as a barrier against ion diffusion between the alloy and the ambient phase. Custom steel grades can be designed for specific applications by optimizing their properties throughout alloy composition [1].


2018 ◽  
Author(s):  
Tim Hall ◽  
Santosh Vijapur ◽  
Jennings E. Taylor ◽  
Jing Xu ◽  
Maria Inman

Biomass embodies tremendous potential as a renewable energy resource. According to the biomass thermal Energy Council (BTEC), biomass energy is renewable, carbon neutral, domestic and technologically mature. In addition, the low cost per BTU of wood chips and pellets relative to fossil fuels makes biomass an attractive thermal energy source. Furthermore, ~7% of global energy consumption comprises small-scale biomass combustion, representing a tremendous market for technologies that facilitate enhanced biomass utilization. However, a major challenge associated with utilization of biomass is its combustion behavior. The moisture content, chemical composition, and combustion efficiency varies depending on the source of biomass. Small scale biomass combustors, which for cost reasons are often constructed of mild or low-alloy steels, during operation are subjected to corrosive environments that include alkali halides (borne, e.g., by fly ash particulates), mineral/halogen acids and water; as well as various others such as sulfur and nitrogen oxides. There is a need to create more efficient, longer lasting, cleaner, and cost effective cookstoves for use in burning biomaterials. The materials used for cookstoves must improve burning efficiency, must be able operate at higher temperatures, and should be low cost material systems to durably perform in the corrosive environments. Within this context, Faraday Technology is working on developing low cost and high value corrosion-resistant alloy coatings for existing bio-combustors or lower cost steels with the goal of increasing their functional lifetime, while reducing the component cost. The manufacturing process involves electrodeposition of binary/ternary/quaternary alloys consisting of [Ni/Co]-Cr-[Mo/Fe] onto a low cost substrate and subsequent accelerated high temperature corrosion evaluation. A wide array of electrolytes and processing parameters were evaluated in order to understand these effects on the deposit composition, structure, and high-temperature corrosion resistance properties towards the goal of developing an ideal alloy coating. Specifically, 60 wt% Ni – 40 wt% Cr (NiCr) binary and 25 wt% Ni – 20 wt% Cr – 55 wt% Co (NiCoCr) ternary alloy coatings demonstrated enhanced corrosion resistance when exposed to an aggressive environment (~700°C, 1000 hr, coating surface salted with ~3 mg/cm2 every 100 hours). When compared to the SS base material the NiCr and NiCoCr alloy coatings exhibited a 70% lower weight loss and 3.4 times lifetime improvement over its base material.


Alloy Digest ◽  
1964 ◽  
Vol 13 (5) ◽  

Abstract Unitemp-HX is a nickel-base material recommended for high temperature applications. It has outstanding oxidation resistance at high temperatures under most operating conditions, and good high-temperature strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-91. Producer or source: Universal Cyclops Steel Corporation.


Alloy Digest ◽  
1974 ◽  
Vol 23 (2) ◽  

Abstract ALLEGHENY STAINLESS TYPE 434 is a low-carbon ferritic stainless steel with good corrosion resistance to mildly corrosive environments and the atmosphere. It is oxidation resistant at temperatures up to 1600 F for intermittent service and up to 1450-1500 F for continuous service. It is used for automotive trim and other exterior environments. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-292. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2020 ◽  
Vol 69 (12) ◽  

Abstract Outokumpu Moda 410L/4003 is a weldable, extra low carbon, Cr-Ni, ferritic stainless steel that is best suited for mildly corrosive environments such as indoors, where the material is either not exposed to contact with water or gets regularly wiped dry, or outdoors, where some discoloration and superficial rusting are acceptable. It is a low-cost alternative to low-carbon non-alloy steels in certain applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1330. Producer or source: Outokumpu Oyj.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Outokumpu Moda 410S/4000 is a 13% Cr, ferritic stainless steel that is used in applications requiring good resistance to mildly corrosive environments. It is a low carbon, non-hardening modification of Type 410 stainless steel. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance, corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1329. Producer or source: Outokumpu Oyj.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Viktoria Hoppe ◽  
Patrycja Szymczyk-Ziółkowska ◽  
Małgorzata Rusińska ◽  
Bogdan Dybała ◽  
Dominik Poradowski ◽  
...  

The purpose of this work is to obtain comprehensive reference data of the Ti-13Nb-13Zr alloy base material: its microstructure, mechanical, and physicochemical properties. In order to obtain extensive information on the tested materials, a number of examination methods were used, including SEM, XRD, and XPS to determine the phases occurring in the material, while mechanical properties were verified with static tensile, compression, and bending tests. Moreover, the alloy’s corrosion resistance in Ringer’s solution and the cytotoxicity were investigated using the MTT test. Studies have shown that this alloy has the structure α’, α, and β phases, indicating that parts of the β phase transformed to α’, which was confirmed by mechanical properties and the shape of fractures. Due to the good mechanical properties (E = 84.1 GPa), high corrosion resistance, as well as the lack of cytotoxicity on MC3T3 and NHDF cells, this alloy meets the requirements for medical implant materials. Ti-13Nb-13Zr alloy can be successfully used in implants, including bone tissue engineering products and dental applications.


2011 ◽  
Vol 194-196 ◽  
pp. 1253-1256
Author(s):  
Ya Ni Zhang ◽  
Mao Sheng Zheng ◽  
Jie Wu Zhu

The corrosion behavior of CuCr, CuZr and CuCrZr alloys in NaCl solution is reported in this paper. The corrosion performance has been evaluated in NaCl solution atmosphere. The results show the corrosion resistance of pure copper decrease with the addition of the alloying elements initially. However, in the later exposure stages, the corrosion resistance of CuZr and CuCrZr alloy deteriorates significantly while the corrosion resistance of CuCr alloy is slightly better than that of pure copper. In addition, the results of the electrochemical experiments indicate that the different behavior for the element Cr and Zr in the base material and corrosion scales lead to the change of the corrosion resistance.


Author(s):  
Do Le Hung Toan, Shuo-Jen Lee Do

Micro arc oxidation method has been developed in the field of surface protection of magnesium alloys and considered as a simple, highly effective, commercial and environmentally friendly method in industry. MAO coatings are fabricated on novel Mg-Al-Li-Zn alloy to improve the anti-corrosion performance of surface by using friendly alkaline electrolytes under a high electrical potential. The Taguchi method and optimal analysis are used to identify the effects of the three factors including current density, processing time and electrical frequency on coating’s characteristics. The results have shown that the main factor that affects coating thickness and corrosion resistance of coating is the processing time. The results obtained by optimal conditions are consistent with prediction values of Taguchi analysis. The thickness of the coating can help to improve the long-term corrosion protection of a MAO coating in corrosive environments.


Sign in / Sign up

Export Citation Format

Share Document