An Investigation of the Fill Factor and Efficiency of Molecular Semiconductor Solar Cells

2021 ◽  
Vol 1039 ◽  
pp. 373-381
Author(s):  
Taif Saad Al Maadhde ◽  
Mohammad Hafizuddin Jumali ◽  
Hadi J.M. Al-Agealy ◽  
Fatimah Binti Abdul Razak ◽  
Chi Chin Yap

This study investigated and calculated the fill factor and efficiency of N719 and D149 organic dyes in titanium dioxide (TiO2) solar cell systems using a current equation that we derived using a quantum transition-state theory (TST). The theory of charge transfer reactions was used to investigate the electronic current to enhance both the fill factor and efficiency of both N719/ and D149/TiO2 solar cell systems. The current calculated for Di-terabtylammoniumcis-bis (isthiocyanato) bis (2,2-bipyridyl-4,4dicarboxylato) ruthenicyanatoum (II)(N719) and 5-[[4-[4-(2,2-Diphenylethenyl) phenyl]-1,2,3-3a,4,8b-hexahydrocyclopent [b] indol-7-yl] methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid indicated that the molecules of D149, an indoline-based dye, have to be in contact with the semiconductor due to the quantum donor-acceptor scenario model. The efficiency of N719/and D149/TiO2 solar cells were significantly affected due to transition energy, which is caused by the mechanisms of the charge transfer process. Solvents; such as trifluoroethanol (C2H3F3O), propanol (C3H8O), ethanol (C2H5OH), and acetonitrile (C2H3N); were used to determine the current, fill factor, and efficiency. Coefficients of charge transfer; such as transition energy, barrier, driving force energy, current, power-conversion efficiency, fill factor (FF), and efficiency; were evaluated theoretically. The current of the N719/ system with acetonitrile and ethanol solvents was higher than current of the N719/ system with trifluoroethanol and propanol solvents. While the current of the D149/ system with trifluoroethanol and propanol solvents was higher than current of the D149/ system with acetonitrile and ethanol solvents. The current and transition energy efficiencies of both systems varied. devices were found to have the best power conversion efficiency and low transition energies while the power conversion efficiency was large for devices with sizeable current density and activity with lower transition energies. Keywords: Fill Factor, Efficiency, Molecule/Semiconductor, Solar Cells.

2013 ◽  
Vol 378 ◽  
pp. 125-130
Author(s):  
Murtaza Imran

In contrast to the solar cells based on inorganic semiconductors, organic solar cells degrade during illumination. Therefore, the influence of the illumination time on the efficiencies of an organic solar cell is investigated which reveals that under steady-state illumination at 1 sun (100 mW/cm2) the efficiency of the solar cell with the structure of ITO/CuPc/C60/BCP/Ag degrade significantly over few hours. There are three efficiencies that are of interest; Fill Factor (FF), Power Conversion Efficiency (PCE), and Quantum Yield (QY). Fill factor decreased less than power conversion efficiency and quantum yield, indicating that the degradation in those efficiencies is caused by photon-induced damage to the molecules that did not lead to an increase in internal resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


2022 ◽  
Author(s):  
Ehsan Elahi ◽  
Ghulam Dastgeer ◽  
Abdul Subhan Siddiqui ◽  
Supriya A. Patil ◽  
Muhammad Waqas Iqbal ◽  
...  

With perovskite materials, rapid progress in power conversion efficiency (PCE) to reach 25% has gained a significant amount of attention from the solar cell industry.


RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20670-20676 ◽  
Author(s):  
Ju Hwan Kang ◽  
Yu Jung Park ◽  
Myung Joo Cha ◽  
Yeonjin Yi ◽  
Aeran Song ◽  
...  

Non-conjugated polyelectrolytes are empolyed as interfacial layers at the electrodes of solar cells and transistor devices to improve the power conversion efficiency (PCE) and device performance.


RSC Advances ◽  
2020 ◽  
Vol 10 (33) ◽  
pp. 19513-19520 ◽  
Author(s):  
Miao Yu ◽  
Lijia Chen ◽  
Guannan Li ◽  
Cunyun Xu ◽  
Chuanyao Luo ◽  
...  

The charge transfer hindrance of adsorbed oxygen species on SnO2 is successfully reduced by modifying it with guanidinium chloride, improving the power conversion efficiency from 15.33% to 18.46% (after modification) with maximum fill factor of 80%.


2018 ◽  
Vol 42 (3) ◽  
pp. 1626-1633 ◽  
Author(s):  
M. L. Keshtov ◽  
S. A. Kuklin ◽  
A. R. Khokhlov ◽  
I. O. Konstantinov ◽  
N. V. Nekrasova ◽  
...  

The increase in the fluorine atoms in the copolymer improves the power conversion efficiency of the polymer solar cell.


2015 ◽  
Vol 8 (1) ◽  
pp. 303-316 ◽  
Author(s):  
Abd. Rashid bin Mohd Yusoff ◽  
Dongcheon Kim ◽  
Hyeong Pil Kim ◽  
Fabio Kurt Shneider ◽  
Wilson Jose da Silva ◽  
...  

We propose that 1 + 1 + 1 triple-junction solar cells can provide an increased efficiency, as well as a higher open circuit voltage, compared to tandem solar cells.


2019 ◽  
Vol 7 (8) ◽  
pp. 3570-3576 ◽  
Author(s):  
Zhong Zheng ◽  
Shaoqing Zhang ◽  
Jianqiu Wang ◽  
Jianqi Zhang ◽  
Dongyang Zhang ◽  
...  

An inverted organic solar cell with finely tuned ZnO : PFN-Br electron transporting layer shows 13.8% power conversion efficiency and 78.8% fill factor.


Sign in / Sign up

Export Citation Format

Share Document