Quenching of Growth of Zinc Oxide Nanoparticles by Adsorption of Organic Stabilizers

2004 ◽  
Vol 449-452 ◽  
pp. 1133-1136 ◽  
Author(s):  
Dong Un Seo ◽  
Cheng Zhu Lu ◽  
Ho Jung Chang ◽  
Sang Woo Joo

We examined quenching of growth of ZnO nanoparticles with the injection of various organic surfactants. Aliphatic isocyanides as well as organothiols were found to adsorb on ZnO nanoparticle surfaces. For a carboxylate-terminated thiol, a retardation of growth appeared to be effective presumably due to the adsorption of the carboxylate COO- group on the ZnO surface. Photoluminescence spectra and transmission electron microscopy images were obtained for thiolcapped ZnO nanoparticles. The thiol-capped ZnO nanoparticles was found to fluoresce at the wavelength shorter by ~6 nm than those in the absence of any organic surfactants.

2020 ◽  
Vol 16 (2) ◽  
pp. 137-152
Author(s):  
Mariana Buşilă ◽  
Aurel Tăbăcaru ◽  
Viorica Muşsat ◽  
Bogdan Ştefan Vasile ◽  
Ionela Andreea Neaşu ◽  
...  

Surface modification of zinc oxide nanoparticles (ZnO NPs) is a strategy to tune their biocompatibility. Herein we report on the synthesis of a series of fluorescent ZnO NPs modified with 2–10% (3-glycidyloxypropyl)trimethoxysilane (GPTMS) to investigate the fluorescence properties and to explore their applications in microbiology and biomedicine. The obtained ZnO NPs were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). Size reduction occurred from ca. 13 nm in unmodified ZnO to 3–4 nm in silane-modified samples and fluorescence spectra showed size-dependent variation of the photoemission bands' intensity. The antibacterial and cytotoxic activities were investigated on Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, and in ovarian (A2780) and prostate (PC3) cancer cells by tetrazolium/formazan-based methods. The antibacterial effect was higher for E. coli than S. aureus, while the cytotoxic activity was similar for both cancer cells and varied with the particle size. Cell death by apoptosis, and/or necrosis versus autophagy, were explored by flow cytometry using an Annexin V based-method and transmission electron microscopy (TEM). The main mechanism of ZnO NPs toxicity may involve the generation of reactive oxygen species (ROS) and the induction of apoptosis or autophagy. This work revealed the potential utility of GPTMS-modified ZnO NPs in the treatment of bacterial infection and cancer.


2016 ◽  
Vol 33 (1) ◽  
pp. 92-113 ◽  
Author(s):  
Sajad Shojai Nasab ◽  
Saeed Zahmatkesh

In this study, a new diacid monomer containing amide, imide, and sulfone functional groups was successfully used to synthesize a new poly(ether-amide) for membrane-based gas separation applications. The synthesized poly(ether-amide) was soluble in organic solvents, has high thermal stability (up to 460℃ under nitrogen atmosphere, for 10% weight loss), and high glass transition temperature (Tg = 274℃). This poly(ether-amide) was combined with different amounts of surface-modified zinc oxide nanoparticles to provide organic–inorganic nanocomposites. The optically transparent and flexible membranes of these hybrid nanocomposites were prepared. The obtained materials were characterized by Fourier transform-infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, X-ray powder diffraction, field emission-scanning electron microscopy, and transmission electron microscopy techniques. Transmission electron microscopy of the nanocomposite film with 15 wt% zinc oxide confirms that the nanoparticles are well dispersed in the polymer matrix. Thermal gravimetric analysis data indicated that the hybrid materials had better thermal behavior with increasing surface-modified zinc oxide nanoparticles nanoparticle content. The poly(ether-amide)/surface-modified zinc oxide nanoparticles nanocomposite film mechanical properties improved with increasing surface-modified zinc oxide nanoparticles content. The permeability and selectivity of the poly(ether-amide)/zinc oxide membranes as a function of the surface-modified zinc oxide nanoparticles weight percentage were studied, and the results indicated that the CO2 and CH4 permeability increased with increasing zinc oxide content. In general, the membranes prepared from these polymers showed very good permeability and permselectivity for a pair of gases.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Meron Girma Demissie ◽  
Fedlu Kedir Sabir ◽  
Gemechu Deressa Edossa ◽  
Bedasa Abdisa Gonfa

The synthesis of metal oxide nanoparticles with the use of medicinal plant extract is a promising alternative to the conventional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from indigenous “Koseret” Lippia adoensis leaf extract which is an endemic medicinal plant and cultivated in home gardens of different regions of Ethiopia. The biosynthesized zinc oxide nanoparticles were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. Furthermore, this study also evaluated the antibacterial activity of the synthesized ZnO nanoparticles against clinical and standard strains of Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Enterococcus faecalis by the disc diffusion method. According to the result of this study, ZnO nanoparticles synthesized using Lippia adoensis leaf extract showed promising result against both Gram-positive and Gram-negative bacterial strains with a maximum inhibition zone of 14 mm and 12 mm, respectively, using uncalcinated form of the synthesized ZnO nanoparticles.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Banzeer Ahsan Abbasi ◽  
Javed Iqbal ◽  
Riaz Ahmad ◽  
Layiq Zia ◽  
Sobia Kanwal ◽  
...  

This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet–visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.


2009 ◽  
Vol 08 (03) ◽  
pp. 277-279 ◽  
Author(s):  
MOHSEN OFTADEH ◽  
MASOUD SALAVATI-NIASARI ◽  
FATEMEH DAVAR

Zinc oxide nanoparticles were successfully prepared through the decomposition of zinc acetylacetonate precursor in oleylamine in the presence of triphenylphosphine. The products were characterized by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy.


2008 ◽  
Vol 8 (8) ◽  
pp. 4224-4226 ◽  
Author(s):  
Mohan Raja ◽  
A. M. Shanmugaraj ◽  
Sung Hun Ryu

Zinc oxide (ZnO) nanoparticle has been synthesized via sol–gel chemistry using zinc acetate as a precursor with sodium hydroxide solution through microemulsion technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies reveal that the resultant zinc oxide nanoparticles are wurtzite type with the controlled morphology of nano triangular and half ellipsoid structures. Room temperature photoluminescence measurement of zinc oxide nanoparticles exhibits a strong green band at around 375 nm with excitation energy of 3.30 eV indicating oxygen vacancies on the surface of the nanoparticles.


Cucurbita seed like zinc oxide (ZnO) nanoparticle is synthesised via chemical reflux method. The phase, size and structure of ZnO elucidates by X-ray diffraction method. Infrared spectrum is revealed its functional groups which are present in the synthesised nanoparticles. The cucurbita seed like morphology of prepared zinc oxide nanoparticles were examined by SEM analysis. Optical absorption property and bandgap of synthesized ZnO nanoparticles are investigated. The electrochemical activity of Cucurbita seed like ZnO nanoparticles measurement carry out through electrochemical impedance analysis, galvanostatic charge discharge and cyclic voltammetry results


2011 ◽  
Vol 1316 ◽  
Author(s):  
Justin T. Seil ◽  
Thomas J. Webster

ABSTRACTParticulate zinc oxide (ZnO) is a known antibacterial agent. Studies have shown that reducing the size of ZnO particles to nanoscale dimensions further enhances their antibacterial properties. Polymers, like all biomaterials, run the risk of harboring bacteria which may produce an antibiotic-resistant biofilm. The addition of ZnO nanoparticles, to form a composite material, may reduce undesirable bacteria activity. The purpose of the present in vitro study was to investigate the antibacterial properties of ZnO nanoparticles when incorporated into a polymer biomaterial. Staphylococcus aureus were seeded at a known cell density onto coverslips coated in a film of polyvinyl chloride (PVC) with varying concentrations of ZnO nanoparticles. Samples were cultured for 24 or 72 h. Methods of analysis, including optical density readings and crystal violet staining, indicated a reduced presence of biofilm on ZnO nanoparticle and polymer composites compared to polymer control. Live/dead assays provided images to confirm reduced presence of active bacteria on samples with zinc oxide nanoparticles. Development of this technology may improve biomaterial effectiveness for applications, such as endotracheal tubes and implanted biomaterials, which are prone to bacterial infection.


2021 ◽  
Author(s):  
Gajendran Pavithra ◽  
Santhakumar kannappan

Abstract The present paper describes the green synthesis of Zinc oxide nanoparticles (ZnO NPs) from the flowers of L. nepetifolia. The synthesis of ZnO nanoparticles and examined by using Ultraviolet-visible spectroscopy, Fourier Transform-Infrared spectroscopy, X-ray Diffraction analysis, Dynamic Light Scattering analysis, Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy, Transmission Electron Microscopy, and Thermogravimetric Analysis. The photocatalytic studies were followed using methylene blue (MB) dye by ZnO nanoparticles by using sunlight as a source. The degradation of MB dye is found to be 90 %. Then the synthesized ZnO nanoparticles help to evaluate the antioxidant activities. The antioxidant activities of ZnO nanoparticles were exhibiting through scavenging of Nitric oxide, Hydrogen peroxide, and DPPH free radicals. Furthermore, the electrochemical analysis of reduced Graphene Oxide-Zinc oxide (rGO-ZnO) nanocomposite shows that the prepared rGO-ZnO nanocomposite has a high specific capacitance of about 667 F g-1 in comparison with the pure Zinc oxide nanoparticles (200 F g-1) and has good cycling stability of around 1000 cycles. The synthesis of multifunctional ZnO nanoparticles by using natural plant products like seeds, leaves, flowers, etc may help to explore as environment-friendly which is opposite to chemical synthesis.


Sign in / Sign up

Export Citation Format

Share Document