Preparation of Template Free Zinc Oxide Nanoparticles Using Sol–Gel Chemistry

2008 ◽  
Vol 8 (8) ◽  
pp. 4224-4226 ◽  
Author(s):  
Mohan Raja ◽  
A. M. Shanmugaraj ◽  
Sung Hun Ryu

Zinc oxide (ZnO) nanoparticle has been synthesized via sol–gel chemistry using zinc acetate as a precursor with sodium hydroxide solution through microemulsion technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies reveal that the resultant zinc oxide nanoparticles are wurtzite type with the controlled morphology of nano triangular and half ellipsoid structures. Room temperature photoluminescence measurement of zinc oxide nanoparticles exhibits a strong green band at around 375 nm with excitation energy of 3.30 eV indicating oxygen vacancies on the surface of the nanoparticles.

Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Banzeer Ahsan Abbasi ◽  
Javed Iqbal ◽  
Riaz Ahmad ◽  
Layiq Zia ◽  
Sobia Kanwal ◽  
...  

This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet–visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.


2010 ◽  
Vol 09 (05) ◽  
pp. 439-445
Author(s):  
DHIRAJ KUMAR ◽  
SUNIL KUMAR ◽  
H. S. BHATTI

In this paper, addition of aluminum in zinc oxide is incorporated using low-temperature chemical synthesis route. Aluminum ions help in crystallization of zinc oxide nanoparticles. Characterization of the synthesized nanoparticles of zinc oxide has been done using Transmission electron microscope (TEM), and X-ray diffraction (XRD) analysis, Energy-resolved photoluminescence (PL) spectra and Time-resolved laser-induced photoluminescence (TRPL) at room temperature. Transmission electron microscopic observations and X-Ray diffraction studies indicate highly crystalline nature and particle size of the order of 20 nm in ZnO:Al . Time-resolved laser-induced photoluminescence measurements have been done using pulsed nitrogen laser as an excitation source, operated at wavelength 337.1 nm and having high peak output power of 1 MW. The results show that at higher concentrations of Al doping in host ZnO phosphor, emission intensity is more by several orders of magnitude and lifetime shortening indicates that these nanoparticles are more efficient as compared with lower concentrations of dopant.


2016 ◽  
Vol 38 ◽  
pp. 36-39 ◽  
Author(s):  
Kean Chuan Lee ◽  
Zulhilmi Akmal bin Saipolbahri ◽  
Hassan Soleimani ◽  
Hasnah Mohd. Zaid ◽  
Beh Hoe Guan ◽  
...  

Zinc oxide (ZnO) with different nanoparticle (NP) sizes was prepared and synthesized by using the sol-gel method with organic precursor, followed by the characterization of the ZnO nanoparticle by using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) to identify the effect of nanoparticle sizes of ZnO on the viscosity of the nanofluid. The impact of nanoparticle sizes on EOR was investigated. Results showed both viscosity and interfacial tension (IFT) increased with the nanoparticle size.


2018 ◽  
Vol 34 ◽  
pp. 02013 ◽  
Author(s):  
Nur Zarifah Zainuri ◽  
Nur Hanis Hayati Hairom ◽  
Dilaelyana Abu Bakar Sidik ◽  
Nurasyikin Misdan ◽  
Norhaniza Yusof ◽  
...  

Performance and reusability of different zinc oxide nanoparticles (ZnO-PVP and ZnO-PEG) for photocatalytic degradation of palm-mill oil effluent (POME) has been studied. The nanoparticles properties were characterised with fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM results show that ZnO-PEG nanoparticles exhibit the smaller size than ZnO-PVP with less agglomeration. It was found that ZnO-PEG shows better effectiveness than ZnO-PVP in reducing turbidity, colour and increasing the dissolved oxygen (DO). By using two types of reusability methods: (a) oven drying (b) hot water rinsing, the oven drying method portrayed the most efficient route for POME treatment. This research would be a solution to the palm oil industry for photocatalyst recovering as well as reduction of the chemical usage in order to meet the development of advanced and greener technologies.


2004 ◽  
Vol 449-452 ◽  
pp. 1133-1136 ◽  
Author(s):  
Dong Un Seo ◽  
Cheng Zhu Lu ◽  
Ho Jung Chang ◽  
Sang Woo Joo

We examined quenching of growth of ZnO nanoparticles with the injection of various organic surfactants. Aliphatic isocyanides as well as organothiols were found to adsorb on ZnO nanoparticle surfaces. For a carboxylate-terminated thiol, a retardation of growth appeared to be effective presumably due to the adsorption of the carboxylate COO- group on the ZnO surface. Photoluminescence spectra and transmission electron microscopy images were obtained for thiolcapped ZnO nanoparticles. The thiol-capped ZnO nanoparticles was found to fluoresce at the wavelength shorter by ~6 nm than those in the absence of any organic surfactants.


2021 ◽  
Author(s):  
RAVI KUMAR YADAV ◽  
Narsingh Bahadur Singh ◽  
AJEY SINGH ◽  
VIJAYA YADAV ◽  
KM NIHARIKA ◽  
...  

Abstract The present work describes the bio-based synthesis (green) and characterization of Zinc oxide nanoparticles (ZnO NPs) using leaf extract of Tridax, the synthesized nanoparticles were used to study their beneficial effect in the growth and metabolism of Vigna radiata. Zinc oxide nanoparticles (ZnONP) were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), High-Resolution Transmission Electron Microscopy (HR-TEM), and Ultraviolet–visible spectroscopy (UV–Vis spectra). Growth of V. radiata seedlings was measured in terms of shoot length (SL) and root length (RL) were treated 20 and 40 mg/L concentrations of green synthesized ZnO NPs, and constant concentration (50 mg/L) of PbCl2. These studies have shown the effect of ZnO NPs in the stimulation of growth as well as physiological and biochemical parameters. Vigna seedlings showed positive effects depending upon the increasing concentrations of ZnO NPs. This study suggests that ZnO NPs can be effectively used to ameliorate the toxicity of Pb in Vigna plants.


2021 ◽  
Author(s):  
S. Neminushchaya ◽  
E. Tomina ◽  
A. Dmitrenkov

The aim of this work was to study compositions based on vegetable oil waste and nanoscale zinc oxide particles for processing natural wood. The sol-gel method was used for the synthesis of zinc oxide nanoparticles. The synthesized zinc oxide nanoparticles did not contain impurities and had a shape close to spherical, and their size did not exceed 20 nm. We used freshly prepared suspensions of zinc oxide nanoparticles in used vegetable oil with their content in the amount of 0.1, 0.5 and 1.0 wt. parts per 100 parts of oil. The wood was treated by hot-cold impregnation. The tests were carried out on samples of birch and pine wood of standard sizes. In the modified samples, the wetting angle, moisture and water absorption, as well as their swelling were determined. It is shown that the use of zinc oxide nanoparticles in compositions based on vegetable oil waste can significantly reduce the moisture and water resistance of wood and reduce its swelling. The optimal dosages of the nanopowder introduced into the used vegetable oil and the conditions of impregnation were selected. The compositions used on the basis of vegetable oil waste are characterized by environmental safety, and the resulting wood samples had an improved appearance.


2021 ◽  
Vol 17 (9) ◽  
pp. 1824-1829
Author(s):  
Junlin Li ◽  
Xiangfei Li ◽  
Dong Liang ◽  
Xiaojuan Zhang ◽  
Qing Lin ◽  
...  

This study exploits the potential of zinc oxide nanoparticles (ZnO-NPs) with diverse morphologies as catalysts and antibacterial agent. Spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were prepared by microemulsion method, solvent heat method and hydrothermal method, respectively. The structural characterizations of samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. XRD results revealed the formation of spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were all wurtzite crystal structure. SEM results showed that spherical ZnO-NPs had an average particle size of 30–40 nm, rod-shaped ZnO-NPs were about 500 nm long and 100 nm wide with obvious hexagonal crystals. Flower-shaped ZnO-NPs had a three-dimensional appearance with obvious petals. Results of electrochemical HER (Hydrogen evolution reaction) experiments revealed that spherical ZnO-NPs exhibited the highest electrocatalytic activity at the lowest potential voltage due to their largest specific surface area. The antibacterial property of ZnO-NPs samples were studied by the optical density method and disc diffusion method. All samples had antibacterial effects against E. coli. and flower-shaped ZnO-NPs showed the best antibacterial activity due to the largest surface area in comparison with spherical ZnO-NPs and rod-shaped ZnO-NPs, which promised the maximum Zn2+ release as bactericide mechanism that registered in the case of different ZnO-NPs morphologies.


RSC Advances ◽  
2015 ◽  
Vol 5 (65) ◽  
pp. 53117-53128 ◽  
Author(s):  
Majid Azarang ◽  
Ahmad Shuhaimi ◽  
M. Sookhakian

Zinc oxide nanoparticles–reduced graphene oxide composites with a high degree of crystallinity and high dispersity were successfully synthesized via a facile sol–gel one-pot method in a starch environment as a natural surfactant for the fabrication of solar cell devices.


Author(s):  
Sneha Sawade ◽  
Pramod Kulkarni

We reported a simple, green and eco-friendly approach for the synthesis of zinc oxide nanoparticles using aqueous extract of Pongamia pinnata plant leaves acts as reducing agent as well as capping agent. Biosynthesized zinc oxide nanoparticles were characterized by FTIR, X-ray diffraction and field emission scanning electron microscopy. The results suggested that the zinc oxide nanoparticles synthesized by aqueous extract of Pongamia pinnata plant leaves with high purity, mostly spherical in shape with an average size of 23.5 nm.


Sign in / Sign up

Export Citation Format

Share Document