Fabrication of Silicon Nitride Ceramics with Electrical Conductivity

2005 ◽  
Vol 486-487 ◽  
pp. 501-505 ◽  
Author(s):  
Yoon Ho Kim ◽  
Tohru Sekino ◽  
Hirokazu Kawaoka ◽  
Takafumi Kusunose ◽  
Tadachika Nakayama ◽  
...  

The electrical conductivity was provided to structural ceramics by controlling the grain boundary phase. We focused on the grain boundary phase of Si3N4 ceramics, which can be considered as an infinite network for conducting paths. In this study, we investigated the correlationship of the microstructure, mechanical properties, and electrical conductivity of Si3N4 ceramics with V2O5 based glasses. The Si3N4 ceramic with V2O5 based glasses were successfully fabricated by controlling the composition of grain boundary phase. Fabricated materials by a PECS method indicated a very fine microstructure. The mechanical properties of Si3N4 ceramics with V2O5 based glasses were not good compared to those of conventional Si3N4. However, the values for the SNVB and the SNVBA were four or six orders of magnitude higher at room temperature and had excellent mechanical properties compared to pure V2O5 based glasses.

2003 ◽  
Vol 18 (12) ◽  
pp. 2752-2755 ◽  
Author(s):  
Hirokazu Kawaoka ◽  
Tohru Sekino ◽  
Takafumi Kusunose ◽  
Koichi Niihara

Sodium ion-conductive silicon nitride ceramic with Na2O–Al2O3–SiO2 glass as the grain boundary phase was fabricated by adding Na2CO3, Al2O3, and SiO2 as sintering additives. The electrical conductivity was two and four orders of magnitude higher than that of Si3N4 ceramic with Y2O3 and Al2O3 additives at 100 and 1000°C, respectively. This result clearly indicates that ionic conductivity can be provided to insulating structural ceramics by modification of the grain boundary phase without dispersion of conductive particles.


1996 ◽  
Vol 441 ◽  
Author(s):  
R. Varano ◽  
J. D. Bobyn ◽  
S. Yue

AbstractThe microstructure, crystallography and mechanical properties of a wrought (ASTM F-1537) Co-Cr- Mo hip implant alloy were studied in this work. The effects of carbon content, heat treatment and room temperature compression on the above characteristics were also analyzed. Metallography of the asreceived material revealed the presence of ‘twins’ in a relatively fine microstructure with some randomly distributed grain boundary carbides. Heat treatment of the specimens produced a coarser microstructure, more uniformly distributed grain boundary carbides and annealing twins. Neutron diffraction of the specimens, which were deformed at room temperature, exhibited an increase in the volume fraction of the more stable Co-hexagonal closed-packed (HCP) crystal structure, due to a strain-induced transformation (SIT) from the metastable Co-face-centered cubic (FCC) crystal structure. It was also seen that the higher C specimens, as well as the heat treated specimens, possessed a lower volume fraction of the HCP phase. It was found, through shear punch testing, that the deformed specimens exhibited higher mechanical properties without any significant losses to the ductility of the material.


2008 ◽  
Vol 403 ◽  
pp. 35-38 ◽  
Author(s):  
Daisuke Horikawa ◽  
Junichi Tatami ◽  
Toru Wakihara ◽  
Katsutoshi Komeya ◽  
Takeshi Meguro

HfO2-added Si3N4 ceramics are known to exhibit excellent high-temperature strength and excellent damage characteristics because HfO2 assists the crystallization of the grain boundary phase. However, the sintering shrinkage behavior and mechanical properties of HfO2-added Si3N4 have not been well clarified so far, although it has been reported that TiO2, in which Ti is from the same group as Hf in the periodic table, enhances the densification of the Si3N4-Y2O3-Al2O3-AlN system and wear resistance due to TiN formed from TiO2 and AlN in the grain boundary. In the present study, we focus on HfO2 as the sintering aid to investigate the sintering shrinkage behavior and mechanical properties of HfO2-added Si3N4. The powder mixtures are prepared by the addition of HfO2 to the Si3N4-Y2O3-Al2O3 or Si3N4-Y2O3-Al2O3-AlN system. The sintering shrinkage curves of HfO2-added Si3N4 ceramics show rapid shrinkage at 1600°C as compared with those of the Si3N4 ceramics without HfO2.The shrinkage can be explained by the formation of SiO2-Y2O3-HfO2 derived liquid phases. Furthermore, the mechanical properties of HfO2-added Si3N4 were as excellent as those of the Si3N4 ceramics without HfO2.


2006 ◽  
Vol 317-318 ◽  
pp. 645-648 ◽  
Author(s):  
Yoon Ho Kim ◽  
Tohru Sekino ◽  
Hirokazu Kawaoka ◽  
Rak Joo Sung ◽  
Takafumi Kusunose ◽  
...  

Si3N4 ceramics with V2O5 based glasses as sintering additives were successfully fabricated by a powder mixing process and rapid sintering by the PECS method. The fabricated materials by Pulsed Electric Current Sintering (PECS) exhibited very fine microstructure with α and β grains. Electric conductivity for the Si3N4/(V2O5-B2O3) and the Si3N4/(V2O5-B2O3-Al2O3) at room temperature were four and six orders of magnitude higher at room temperature, and two and three orders of magnitude higher at 1000 oC than the conventional Si3N4, respectively


Author(s):  
Bradley L. Thiel ◽  
Chan Han R. P. ◽  
Kurosky L. C. Hutter ◽  
I. A. Aksay ◽  
Mehmet Sarikaya

The identification of extraneous phases is important in understanding of high Tc superconducting oxides. The spectroscopic techniques commonly used in determining the origin of superconductivity (such as RAMAN, XPS, AES, and EXAFS) are surface-sensitive. Hence a grain boundary phase several nanometers thick could produce irrelevant spectroscopic results and cause erroneous conclusions. The intergranular phases present a major technological consideration for practical applications. In this communication we report the identification of a Cu2O grain boundary phase which forms during the sintering of YBa2Cu3O7-x (1:2:3 compound).Samples are prepared using a mixture of Y2O3. CuO, and BaO2 powders dispersed in ethanol for complete mixing. The pellets pressed at 20,000 psi are heated to 950°C at a rate of 5°C per min, held for 1 hr, and cooled at 1°C per min to room temperature. The samples show a Tc of 91K with a transition width of 2K. In order to prevent damage, a low temperature stage is used in milling to prepare thin foils which are then observed, using a liquid nitrogen holder, in a Philips 430T at 300 kV.


2010 ◽  
Vol 638-642 ◽  
pp. 273-278 ◽  
Author(s):  
Xi Wu Li ◽  
Bai Qing Xiong ◽  
Yon Gan Zhang ◽  
Guo Jun Wang ◽  
Zhi Hui Li ◽  
...  

In this study, the effect of various aging treatment (T6 and T7 treatment) on the mechanical properties, electrical conductivity and the microstructure of an Al-7.5Zn-1.3Mg-1.4Cu-0.12Zr alloy has been investigated. The results show that with elevating the aging treatment temperatures, the aging response rate is greatly accelerated. When T6 temper is performed at 140°C for 12h, as compared to peak aging for 24h at 120°C, the UTS and the corresponding Elongation values keep the same level, whereas the TYS and the electrical conductivity obviously increase by 5% and 9%, which is up to 560 MPa and 22.6 MS/m, respectively. And there are clear PFZs along the grain boundary and slightly coarser precipitates inside the grain. GPI zones, GPII zones and η' phases are major precipitates for the alloy under T6 condition. When T7 temper is performed on the alloy, the main precipitates are GPII zones, η′ and η phases. The coarser precipitates inside the grain and discontinuous grain boundary precipitates are favorable to electrical conductivity, which decrease the strength of 5~17% compared to T6 treatment. After T76 treatment (i.e., 110°C/6 h + 160°C/6 h), the UTS, TYS, Elongation and electrical conductivity values were 540 MPa, 510 MPa, 16.7% and 23.5 MS/m, respectively.


1992 ◽  
Vol 287 ◽  
Author(s):  
Y. Sato ◽  
C. Sakurai ◽  
M. Ueki ◽  
K. Sugita

ABSTRACTA homogeneous mixture of Y2O3, CeO2 and MgO with a final weight ratio of 3:1: 2 was prepared by the alkoxide method. The powder mixture was then added into Si3N4 powder in amounts ranging from 4 to 12 wt%, andconsolidated by hot-pressing. Microstructure and mechanical properties of the sintered bodies were determined and compared to those of materials prepared by the conventional route of mixing the oxide powders as sintering aids individually in essentially same composition. The β-fraction (modification ratio) in same composition was higher in thesintered bodies made through the alkoxide method than those made through the conventional one. The room temperature flexural strength was maximized with 6wt% addition of the alkoxide derived oxide, whereas, 12wt% addition of the total oxide was required to maximize the strength by conventional processing.


2004 ◽  
Vol 19 (9) ◽  
pp. 2750-2758 ◽  
Author(s):  
Mark I. Jones ◽  
Kiyoshi Hirao ◽  
Hideki Hyuga ◽  
Yukihiko Yamauchi

The wear properties under low loads of β Si3N4 and α sialon materials sintered with different rare-earth oxide sintering additives have been studied under dry sliding conditions using block-on-ring wear tests. All the worn surfaces showed an absence of fracture and smooth surfaces with the presence of an oxygen-rich filmlike debris indicating tribochemically induced oxidation of the surfaces. Extensive grain boundary removal was observed on the worn surfaces thought to be due to adhesion between this silicate phase and the tribochemically oxidized surfaces. The resistance to such oxidation and the properties of the residual grain boundary phase are thought to be important parameters affecting the wear behavior under the present testing conditions. For both the β Si3N4 and α sialon materials, there was an increase in wear resistance with decreasing cationic radius of the rare earth, thought to be due to improved oxidation resistance, and this was more remarkable in the case of the sialon materials where the incorporation of the sintering additives into the Si3N4 structure results in a lower amount of residual boundary phase.


1992 ◽  
Vol 269 ◽  
Author(s):  
Jinsong Zhang ◽  
Lihua Cao ◽  
Fei Xia

ABSTRACTThe Si3N4 ceramics(91wt%Si3N4+5wt%Y2O3+4wt%Al2O3) of room temperature strength 620--760 MPa and fracture toughness 7 MPa-m½ were prepared by microwave sintering and their microstructure and mechanical properties were studied.The experiment results show that the higher N2 pressure (>4atm) is very necessary for microwave sintering of Si3N4 ceramics; microwave sintering can greatly decrease the sintering temperature to 1500* C, and increase the transformation rate of α to β-Si3N4,and reduce the total sintering time to about 1 hour. The mechanical properties of the Si3N4 ceramics sintered by microwave are better than that by conventional pressureless sintering.


Sign in / Sign up

Export Citation Format

Share Document