Texture-Based Explicit Finite-Element Analysis of Sheet Metal Forming

2005 ◽  
Vol 495-497 ◽  
pp. 1535-1540 ◽  
Author(s):  
Svetlana Ristić ◽  
S. He ◽  
Albert Van Bael ◽  
Paul van Houtte

An explicit integration algorithm using a texture-based plastic potential and isotropic hardening has been developed and implemented into a commercial explicit finite-element software program through a user material subroutine (VUMAT in ABAQUS/Explicit). Simulations of cup drawing of an IF-steel are presented and compared to both experimental data and calculation results obtained with a previously developed fully implicit approach (UMAT in ABAQUS/Standard). The explicit formulation has the advantage of being more stable, but local sheet thickness variations cannot be reproduced with the same accuracy.

2004 ◽  
Vol 01 (02) ◽  
pp. 309-328
Author(s):  
R. J. HO ◽  
S. A. MEGUID ◽  
R. G. SAUVÉ

This paper presents a unified novel technique for enforcing nonlinear beam-to-shell, beam-to-solid, and shell-to-solid constraints in explicit finite element formulations. The limitations of classical multi-point constraint approaches are examined at length, particularly in the context of explicit solution schemes. Novel formulation of a generalized constraint method that ensures proper element coupling is then presented, and its computer implementation in explicit integration algorithms is discussed. Crucial in this regard is the accurate and efficient representation of finite rotations, accomplished using an incremental rotation tensor. The results of some illustrative test cases show the accuracy and robustness of the newly developed algorithm for a wide range of deformation, including that in which large rotations are encountered. When compared to existing works, the salient features of the current method are in evidence.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2011 ◽  
Vol 189-193 ◽  
pp. 3778-3781
Author(s):  
Yin Fang Jiang ◽  
Lei Fang ◽  
Zhi Fei Li ◽  
Zhen Zhou Tang

Laser shock processing is a technique similar to shot peening that imparts compressive residual stresses in materials for improved fatigue resistance. Finite element analysis techniques have been applied to predict the residual stresses from Laser shock processing. The purpose of this paper is to investigate of the different sheet thickness interactions on the stress distribution during the laser shock processing of 7050-T7451 aluminum alloy by using the finite element software. The results indicate that the sheet thickness has little effects on the compression stress in the depth of sheet, but great impacts on the reserve side.


2021 ◽  
Author(s):  
Arsalan Majlesi ◽  
Reza Nasouri ◽  
Adnan Shahriar ◽  
David Amori ◽  
Arturo Montoya ◽  
...  

Author(s):  
Douglas W. Stillman

Abstract Design Sensitivity Analysis (DSA) is a widely used technique in many areas of finite element analysis, but one that hasn’t yet become available for industrial problems in crashworthiness and automotive safety. In the following effort, an implementation of DSA in the automotive safety simulation program, Radioss, is described. Radioss is a non-linear structures program using an explicit time integration method. A full set of DSA equations are developed and integrated into Radioss so that the design sensitivities can be computed directly and accurately as a result of a single crashworthiness simulation. Some validation results are included. The resulting methodology promises to be an extremely useful tool for engineers involved in the design of safety and crashworthiness of automobiles.


Sign in / Sign up

Export Citation Format

Share Document