The Use of the Taguchi-Grey Based to Optimize High Speed End Milling with Multiple Performance Characteristics

2006 ◽  
Vol 505-507 ◽  
pp. 835-840 ◽  
Author(s):  
Shen Jenn Hwang ◽  
Yunn Lin Hwang ◽  
B.Y. Lee

This paper presents a new approach for the optimization of the high speed machining (HSM) process with multiple performance characteristics based on the orthogonal array with the grey relational analysis has been studied. Optimal machining parameters can then be determined by the grey relational grade as the performance index. In this study, the machining parameters such as cutting speed, feed rate and axial depth of cut are optimized under the multiple performance characteristics including, tool life, surface roughness, and material removal rate(MMR). As shown experimental results, machining performance in the HSM process can be improved effectively through this approach.

Author(s):  
Shen Jenn Hwang ◽  
Yi-Hung Tsai

The present study propose an innovative turn-boring operation method and focuses on finding optimal turn-boring process parameters for AA7050-T7451 by considering multiple performance characteristics using Taguchi orthogonal array with the grey relational analysis, the effect of cutting variables such as, feed rate, depth of cut and cutting speed are optimized with considerations of multiple performance characteristics namely surface roughness, roundness error, material removal rate and power consumption the optimal values were found out from the Grey relational grade. The result of the Analysis of Variances (ANOVA) is proved that the most significant factor is cutting speed, followed by feed rate, radial depth of cut. Finally, confirmation tests were performed to make a comparison between the experimental results. Experimental results have shown that machining performance in precision turn-boring process can be improved effectively through this approach


Author(s):  
Shen-Jenn Hwang ◽  
Xin-Tang Li

The present study propose an innovative turn-boring operation method and focuses on finding optimal turn-boring process parameters for Ti-6Al-4V by considering multiple performance characteristics using Taguchi orthogonal array with the grey relational analysis, the effect of machining variables such as, feed rate, depth of cut and cutting speed are optimized with considerations of multiple performance characteristics namely surface roughness, roundness error, material removal rate and power consumption the optimal values were found out from the Grey relational grade. The result of the Analysis of Variances (ANOVA) is shown that the most significant factor is cutting speed, followed by feed rate, radial depth of cut. Finally, confirmation tests were carried out to make a comparison between the experimental results. Experimental results have shown that machining performance in the turn-boring process can be improved effectively through this approach.


2014 ◽  
Vol 592-594 ◽  
pp. 584-590 ◽  
Author(s):  
Vinay Varghese ◽  
K. Annamalai ◽  
K. Santhosh Kumar

This study investigates about machining practices used worldwide for machining of Inconel 718 super alloy. The effect of machining parameters like cutting speed, feed and depth of cut on machining responses like surface roughness and material removal rate when end milling Inconel 718 is studied using nine trials carried out based on L9 orthogonal array. A Taguchi based grey relational analysis was used for optimisation of machining parameters for high feed end milling operation on Inconel 718. An analysis of variance (ANOVA) was used to find the most significant factor. Validation of results through confirmation tests was performed and experimental results show that surface quality and productivity can be improved efficiently with this approach.


Author(s):  
Goutam Kumar Bose

The present paper highlights selection of significant machining parameters during Electrochemical grinding while machining alumina-aluminum interpenetrating phase composites by MCDM techniques. The conflicting responses like higher material removal rate, lower surface roughness, lower overcut and lower cutting force are ensured simultaneously by a single parametric combination. Control parameters like electrolyte concentration, voltage, depth of cut and electrolyte flow rate have been considered for experimentation. VIKOR is one of the multiple criteria decision making (MCDM) models to determine the reference ranking from a set of alternatives in the presence of conflicting criteria. Finally Grey Relational Analysis is performed to optimize multiple performances in which different levels combinations of the factors are ranked based on grey relational grade. Surface roughness is given more importance than other responses, using Fuzzy Set Theory considering basic objective of the process. It is observed that substantial improvement in machining performance takes place following this technique. The study highlights the effects of different process variables on multiple performances for complex process like ECG.


Author(s):  
D. S. Sai Ravi Kiran ◽  
Sanapala Sri Ram ◽  
Tangeti Bhaskararao ◽  
Boddu Eswar Venkat Sai ◽  
Kari Suraj Kumar ◽  
...  

With numerous responses established on Taguchi L9, orthogonal array coupled with current work proposes a novel methodology for optimizing machining parameters on turning of AA 6063 T6 aluminum alloy. Experimental assessments are accomplished on AA 6063 T6 aluminum alloy. Turning trails are carried out under dry cutting conditions using an uncoated carbide insert. Cutting parameters such as cutting speed, feed rate, and depth of cut are optimized in this effort while numerous responses such as surface roughness(Ra) and material removal rate are taken into consideration (MRR). From the grey analysis, a grey relational grade(GRG) is calculated. The optimal amounts of parameters have been identified based on the values of grey relational grade, and then ANOVA is used to determine the significant influence of parameters. To authenticate the test result, a confirmation test is executed. The result of the experiments shows that by using this method. the turning process responses can be significantly improved.


Author(s):  
Durai Kumaran ◽  
S.P. Sundar Singh Sivam ◽  
Harshavardhana Natarajan ◽  
P.R. Shobana Swarna Ratna

In order to take advantage of the machining characteristics of magnesium, it is useful to consider recommended tool design and angles. The geometry of the tool can have a large influence on the machining process. Tool geometry can be used to aid with chip flow and clearance, reduce excessive heat generation, reduce tool build up, enable greater feed rates to be employed and improved tool life. This paper presents a new approach for the optimization of machining parameters on face milling of ZE41 with multiple responses based on orthogonal array with grey relational analysis. Machining tests are carried out by inserting 12 mm diameter of insert having 1 flute under dry condition. In this study, machining parameters namely cutting speed, feed and depth of cut and tool node radius are optimized with the considerations of multi responses such as surface roughness, material removal rate, tool wear and thrust force. A grey relational grade is obtained from the grey analysis. Based on the grey relational grade, optimum levels of parameters have been identified and significant contribution of parameters is determined by ANOVA. Confirmation test is conducted to validate the test result. Experimental results have shown that the responses in Machining process can be improved effectively through the new approach.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
S. H. Tomadi ◽  
J. A. Ghani ◽  
C. H. Che Haron ◽  
M. S. Kasim ◽  
A. R. Daud

The main objective of this paper is to investigate and optimize the cutting parameters on multiple performance characteristics in end milling of Aluminium Silicon alloy reinforced with Aluminium Nitride (AlSi/AlN MMC) using Taguchi method and Grey relational analysis (GRA). The fabrication of AlSi/AlN MMC was made via stir casting with various volume fraction of particles reinforcement (10%, 15% and 20%). End milling machining was done under dry cutting condition by using two types of cutting tool (uncoated & PVD TiAlN coated carbide). Eighteen experiments (L18) orthogonal array with five factors (type of tool, cutting speed, feed rate, depth of cut, and volume fraction of particles reinforcement) were implemented. The analysis of optimization using GRA concludes that the better results for the combination of lower surface roughness, longer tool life, lower cutting force and higher material removal could be achieved when using uncoated carbide with cutting speed 240m/min, feed 0.4mm/tooth, depth of cut 0.3mm and 15% volume fraction of AlN particles reinforcement. The study confirmed that with a minimum number of experiments, Taguchi method is capable to design the experiments and optimized the cutting parameters for these performance characteristics using GRA for this newly develop material under investigation.


2011 ◽  
Vol 189-193 ◽  
pp. 1376-1381
Author(s):  
Moola Mohan Reddy ◽  
Alexander Gorin ◽  
Khaled A. Abou El Hossein

This paper presents the prediction of a statistically analyzed model for the surface roughness,R_a of end-milled Machinable glass ceramic (MGC). Response Surface Methodology (RSM) is used to construct the models based on 3-factorial Box-Behnken Design (BBD). It is found that cutting speed is the most significant factor contributing to the surface roughness value followed by the depth of cut and feed rate. The surface roughness value decreases for higher cutting speed along with lower feed and depth of cut. Additionally, the process optimization has also been done in terms of material removal rate (MRR) to the model’s response. Ideal combinations of machining parameters are then suggested for common goal to achieve lower surface roughness value and higher MRR.


2014 ◽  
Vol 6 ◽  
pp. 280313 ◽  
Author(s):  
Kaining Shi ◽  
Dinghua Zhang ◽  
Junxue Ren ◽  
Changfeng Yao ◽  
Yuan Yuan

This paper studied an effective method based on Taguchi's method with the grey relational analysis, focusing on the optimization of milling parameters on surface integrity in milling TB6 alloy. The grey relational grade that is derived from the grey relational analysis is mainly used to determine the optimum cutting process operations with multiple performance characteristics. Specifically, surface roughness (Ra), hardness, and residual stress were important characteristics in surface integrity of milling TB6 alloy. Based on the combination of these multiple performance characteristics, the feed per tooth, cutting speed, and depth of cut were optimized in this study. Additionally, the analysis of variance (ANOVA) was also applied to determine the most significant factor for the surface integrity of milling TB6 alloy according to the contribution of the ANOVA, and the most significant factor is the cutting speed in this paper. Based on the analysis, the experimental test results have been improved prominently through the grey relational analysis. Hence this method can be an effective approach to enhance the surface integrity of milling TB6 alloy.


Author(s):  
Nirmal S. Kalsi ◽  
Rakesh Sehgal ◽  
Vishal S. Sharma

Multi-objective optimization is becoming important day by day due to increase in complexity of the processes and expectations of more reliable solutions. In view of the complexity of the process, controlling the machining parameters without compromising on the response parameters is a tedious process. In the recent approach, researchers have used many combinations of available techniques to solve multi performance characteristic problems depending upon the situation and accuracy desired in the results, to make the results more reliable. In this paper, the authors have pronounced and used a combination of grey relational and Taguchi based analysis to optimize a multi-objective metal cutting process to yield maximum performance of cutting tools in turning. Main cutting force, power consumption, tool wear and material removal rate were evaluated used L18 orthogonal array considering cutting speed, feed rate and depth of cut, using cryogenically treated and untreated tungsten carbide cutting tool inserts.


Sign in / Sign up

Export Citation Format

Share Document