Three-Dimensional Dispersion of Nano-Fillers in Soft Composite as Revealed by Transmission Electron Microscopy/Electron Tomography (3D-TEM)

2006 ◽  
Vol 514-516 ◽  
pp. 353-358 ◽  
Author(s):  
Shinzo Kohjiya

. Generally rubber products are a typical soft material, and a composite of a nano-filler (typically, carbon black or particulate silica) and a rubber (natural rubber and various synthetics are used). The properties of these soft nano-composites have been well known to depend on the dispersion of the nano-filler in the rubbery matrix. The most powerful tool for the elucidation of it has been transmission electron microscopy (TEM). The microscopic techniques are based on the projection of 3-dimensional (3D) body on a plane (x, y plane), thus the structural information along the thickness (z axis) direction of the sample is difficult to obtain. This paper describes our recent results on the dispersion of carbon black (CB) and particulate silica in natural rubber (NR) matrix observed by TEM combined with electron tomography (3D-TEM) technique, which enabled us to obtain images of 3D nano-structure of the sample. Thus, 3D images of CB and silica in NR matrix are visualized and analyzed in this communication. These results are precious ones for the design of soft nano-composites, and the technique will become an indispensable one in nanotechnology.

2007 ◽  
Vol 80 (4) ◽  
pp. 690-700 ◽  
Author(s):  
Atsushi Kato ◽  
Shinzo Kohjiya ◽  
Yuko Ikeda

Abstract Usual rubber products are a composite from rubber and nano-filler (e.g. silica, carbon black, etc.), and it is believed that the good dispersion of the nano-filler is the most important issue determining the performance of rubber vulcanizates. So far, transmission electron microscopy (TEM) has been the most useful tool for evaluation of the dispersion. However, it affords images of the sample projected on an x, y-plane, and the information along the thickness (z-axis) direction is missing. Three-dimensional (3D) visualization of nanometer structure of nano-filler dispersion in a rubber matrix is what all rubber technologists have been dreaming of. This dream is at last realized, and described in this paper. Use of TEM combined with computerized tomography (abbreviated as 3D-TEM in this paper, which is sometimes called electron tomography) enabled us to reconstruct 3D images of nano-filler (silica or carbon black) aggregates in rubbery matrix. It is said that nano-filler aggregate is a structure of size from 10 nm to 1000 nm, and agglomerate is an even larger structure. The 3D-TEM results on silica aggregates in natural rubber were presented in this paper. Silica aggregates were characterized by combining the 3D images of the vulcanizates. Furthermore, density of silica loaded natural rubber as an example of physical properties, was measured, and explained by the structure elucidated by 3D-TEM.


2005 ◽  
Vol 11 (5) ◽  
pp. 378-400 ◽  
Author(s):  
Christian Kübel ◽  
Andreas Voigt ◽  
Remco Schoenmakers ◽  
Max Otten ◽  
David Su ◽  
...  

Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1–2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.


2000 ◽  
Vol 6 (S2) ◽  
pp. 1192-1193 ◽  
Author(s):  
Michael A. O'Keefe

Transmission electron microscopy to a resolution of 0.89Å has been achieved at the National Center for Electron Microscopy and is available to electron microscopists who have a requirement for this level of resolution. Development of this capability commenced in 1993, when the National Center for Electron Microscopy agreed to fund a proposal for a unique facility, a one- Ångstrom microscope (OÅM).2 The OÅM project provides materials scientists with transmission electron microscopy at a resolution better than one Angstrom by exploiting the significantly higher information limit of a FEG-TEM over its Scherzer resolution limit. To turn the misphased information beyond the Scherzer limit into useful resolution, the OÅM requires extensive image reconstruction. One method chosen was reconstruction from off-axis holograms; another was reconstruction from focal series of underfocused images. The OÅM is then properly a combination of a FEG-TEM (a CM300FEG-UT) together with computer software able to generate sub-Ångstrom images from experimental images obtained on the FEG-TEM.Before the advent of the OÅM, NCEM microscopists relied on image simulation to obtain structural information beyond the TEM resolution limit.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1304 ◽  
Author(s):  
Giulio Guzzinati ◽  
Thomas Altantzis ◽  
Maria Batuk ◽  
Annick De Backer ◽  
Gunnar Lumbeeck ◽  
...  

The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.


2005 ◽  
Vol 864 ◽  
Author(s):  
Qianghua Xie ◽  
Peter Fejes ◽  
Mike Kottke ◽  
Xiangdong Wang ◽  
Mike Canonico ◽  
...  

AbstractIn this paper, various types of defects (both threading dislocation and misfit dislocations) in strained Si (sSi) have been analyzed by transmission electron microscopy (TEM). Germanium upper-diffusion has been studied by scanning transmission electron microscopy (STEM) for strained Si on SiGe/SOI. SGOI-devices processed using an optimized thermal budget show minimal Ge diffusion and minimal process related defects. Correlation between the device performance (such as leakage current and reliability) and structural information found in TEM has been established.


2001 ◽  
Vol 7 (S2) ◽  
pp. 968-969
Author(s):  
Theo van der Krift ◽  
Ulrike Ziese ◽  
Willie Geerts ◽  
Bram Koster

The integration of computers and transmission electron microscopes (TEM) in combination with the availability of computer networks evolves in various fields of computer-controlled electron microscopy. Three layers can be discriminated: control of electron-optical elements in the column, automation of specific microscope operation procedures and display of user interfaces. The first layer of development concerns the computer-control of the optical elements of the transmission electron microscope (TEM). Most of the TEM manufacturers have transformed their optical instruments into computer-controlled image capturing devices. Nowadays, the required controls for the currents through lenses and coils of the optical column can be accessed by computer software. The second layer of development is aimed toward further automation of instrument operation. For specific microscope applications, dedicated automated microscope-control procedures are carried out. in this paper, we will discuss our ongoing efforts on this second level towards fully automated electron tomography. The third layer of development concerns virtual- or telemicroscopy. Most telemicroscopy applications duplicate the computer-screen (with accessory controls) at the microscope-site to a computer-screen at another site. This approach allows sharing of equipment, monitoring of instruments by supervisors, as well as collaboration between experts at remote locations.Electron tomography is a three-dimensional (3D) imaging method with transmission electron microscopy (TEM) that provides high-resolution 3D images of structural arrangements. with electron tomography a series of images is acquired of a sample that is tilted over a large angular range (±70°) with small angular tilt increments.


Sign in / Sign up

Export Citation Format

Share Document