Selective Laser Melting of Prealloyed High Alloy Steel Powder Beds

2006 ◽  
Vol 514-516 ◽  
pp. 516-523 ◽  
Author(s):  
C. Steven Wright ◽  
M. Youseffi ◽  
S.P. Akhtar ◽  
T.H.C. Childs ◽  
C. Hauser ◽  
...  

This paper presents the results of a recent comprehensive investigation of selective laser melting (slm) of prealloyed gas and water atomised M2 and H13 tool steel powders. The objective of the study was to establish the parameters that control the densification of single and multiple layers with the aim of producing high density parts without the need for infiltration. Powders were processed using continuous wave (CW) CO2 and Nd:YAG lasers. Relationships between alloy composition, powder particle size and shape, flowability, microstructure (phases present, their size, morphology and distribution), track morphology, post scanned density, surface finish and scan conditions (Laser power, spot size and scan speed) are discussed for single track, single layer and multi-layer (up to 25 layers) constructions. Processing with a Nd:YAG laser with powders placed on substrates rather than on a loose powder bed gave more stable builds than with the CO2 laser. Using the Nd:YAG laser densities up to ~90% relative were possible with H13 powder compared with a maximum of ~70% for M2 in multi-layer builds. Maximum density achieved with CW CO2 processing was only ~60%, irrespective of powder composition. The paper compares the processibility of these materials with stainless steel powders processed to higher densities (up to 99% relative) under similar conditions. The results of the work show that a crucial factor for high density processing is melt pool wettability and this is controlled largely by carbon content; low carbon contents producing better wettability, flatter tracks and higher densities. The significance of this observation for the processing high alloy steels by slm will be discussed.

2019 ◽  
Vol 9 (9) ◽  
pp. 1922 ◽  
Author(s):  
Tae Woo Hwang ◽  
Young Yun Woo ◽  
Sang Wook Han ◽  
Young Hoon Moon

The selective laser-melting (SLM) process can be applied to the additive building of complex metal parts using melting metal powder with laser scanning. A metal mesh is a common type of metal screen consisting of parallel rows and intersecting columns. It is widely used in the agricultural, industrial, transportation, and machine protection sectors. This study investigated the fabrication of parts containing a mesh pattern from the SLM of AISI 304 stainless steel powder. The formation of a mesh pattern has a strong potential to increase the functionality and cost-effectiveness of the SLM process. To fabricate a single-layered thin mesh pattern, laser layering has been conducted on a copper base plate. The high thermal conductivity of copper allows heat to pass through it quickly, and prevents the adhesion of a thin laser-melted layer. The effects of the process conditions such as the laser scan speed and scanning path on the size and dimensional accuracy of the fabricated mesh patterns were characterized. As the analysis results indicate, a part with a mesh pattern was successfully obtained, and the application of the proposed method was shown to be feasible with a high degree of reliability.


2011 ◽  
Vol 189-193 ◽  
pp. 3664-3667 ◽  
Author(s):  
Sheng Zhang ◽  
Qing Song Wei ◽  
Guang Ke Lin ◽  
Xiao Zhao ◽  
Yu Sheng Shi

316L stainless steel parts were manufactured via selective laser melting . This work stu- dies the effects of powder characteristics such as particle size and particle shape composition on the density. It shows that the powder with a broad size distribution and using spherical fine powder can lead to an increase in the density of the loose powder and thus the densification of the laser melted powder. The aerosol powder forms parts of lower oxygen content well, and the density can reach to 90%.


2016 ◽  
Vol 43 (2) ◽  
pp. 0203007
Author(s):  
闫岸如 Yan Anru ◽  
杨恬恬 Yang Tiantian ◽  
王燕灵 Wang Yanling ◽  
马志红 Ma Zhihong ◽  
杜云 Du Yun ◽  
...  

2020 ◽  
Vol 31 ◽  
pp. 100904 ◽  
Author(s):  
Austin T. Sutton ◽  
Caitlin S. Kriewall ◽  
Ming C. Leu ◽  
Joseph W. Newkirk ◽  
Ben Brown

2020 ◽  
Vol 989 ◽  
pp. 816-820
Author(s):  
Roman Sergeevich Khmyrov ◽  
R.R. Ableyeva ◽  
Tatiana Vasilievna Tarasova ◽  
A.V. Gusarov

Mass transfer in the laser-interaction zone at selective laser melting influences the quality of the obtained material. Powder particles displacement during the formation of the single bead is experimentally studied. The so-called denudated zone was visualized by metallography. It was determined that increasing the powder particle size leads to widening the denudated zone. This can signify that the adhesion forces between powder particles prevail over the friction forces.


2008 ◽  
Vol 195 (1-3) ◽  
pp. 77-87 ◽  
Author(s):  
Kamran Aamir Mumtaz ◽  
Poonjolai Erasenthiran ◽  
Neil Hopkinson

Author(s):  
A A Saprykin ◽  
Yu P Sharkeev ◽  
E A Ibragimov ◽  
E V Babakova ◽  
D V Dudikhin

Sign in / Sign up

Export Citation Format

Share Document