Effects of Powder Characteristics on Selective Laser Melting of 316L Stainless Steel Powder

2011 ◽  
Vol 189-193 ◽  
pp. 3664-3667 ◽  
Author(s):  
Sheng Zhang ◽  
Qing Song Wei ◽  
Guang Ke Lin ◽  
Xiao Zhao ◽  
Yu Sheng Shi

316L stainless steel parts were manufactured via selective laser melting . This work stu- dies the effects of powder characteristics such as particle size and particle shape composition on the density. It shows that the powder with a broad size distribution and using spherical fine powder can lead to an increase in the density of the loose powder and thus the densification of the laser melted powder. The aerosol powder forms parts of lower oxygen content well, and the density can reach to 90%.

Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 729 ◽  
Author(s):  
Wei Chen ◽  
Guangfu Yin ◽  
Zai Feng ◽  
Xiaoming Liao

Additive manufacturing by selective laser melting (SLM) was used to investigate the effect of powder feedstock on 316L stainless steel properties include microstructure, relative density, microhardness and mechanical properties. Gas atomized SS316L powders of three different particle size distribution were used in this study. Microstructural investigations were done by scanning electron microscopy (SEM). Tensile tests were performed at room temperatures. Microstructure characterization revealed the presence of hierarchical structures consisting of solidified melt pools, columnar grains and multiform shaped sub-grains. The results showed that the SLM sample from the fine powder obtained the highest mechanical properties with ultimate tensile strength (UTS) of 611.9 ± 9.4 MPa and yield strength (YS) of 519.1 ± 5.9 MPa, and an attendant elongation (EL) of 14.6 ± 1.9%, and a maximum of 97.92 ± 0.13% and a high microhardness 291 ± 6 HV0.1. It has been verified that the fine powder (~16 μm) could be used in additive manufacturing with proper printing parameters.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7544
Author(s):  
Zhentao Wang ◽  
Shanglei Yang ◽  
Yubao Huang ◽  
Cong Fan ◽  
Zeng Peng ◽  
...  

In this paper, 316L stainless steel powder was processed and formed by selective laser melting (SLM). The microstructure of the sample was studied using an optical microscope, and the fatigue failure of the sample and the characteristics of crack initiation and propagation were analyzed, providing a research basis for the application of SLM-316L. Due to the influence of microstructure and SLM process defects, the fatigue cracks of SLM-316L mainly emerged due to defects such as lack of fusion and pores, while the cracks of rolled 316L initiated at the inclusions near the surface of the specimen. After fatigue microcrack initiation of the SLM-316L specimen, due to the existence of shear stress and tear stress, the crack tip was passivated and Z-shaped propagation was formed. The existence of internal defects in SLM-316L made the microcrack initiation random and diverse. At the same time, the existence of defects affected the crack propagation in the form of bending, bifurcation and bridge, which made the main crack propagation deviate from the maximum load direction.


2010 ◽  
Vol 256 (13) ◽  
pp. 4350-4356 ◽  
Author(s):  
Ruidi Li ◽  
Yusheng Shi ◽  
Zhigang Wang ◽  
Li Wang ◽  
Jinhui Liu ◽  
...  

2021 ◽  
Author(s):  
Du Kaiping ◽  
Li Shengfeng ◽  
Shen Jie ◽  
Pi Ziqiang ◽  
Chen Xing

Abstract The product quality of selective laser melting (SLM) is closely related to the alloy powder characteristics, including the size distribution and the oxygen content. In this work, the 316L stainless steel powder was prepared by a vacuum atomization furnace and sieved into a normal-sized distribution range from 15 to 53 μm with a median diameter of 37.4 μm, and a fine-sized distribution range from 10 to 38 μm with a median diameter of 18.9 μm. Then they were mixed with each other in different proportions. The results show that, under the condition of the same SLM parameters, the SLM part, with adding a large amount of fine-sized powder, has a lower density and strength, as well as more holes and spheroidized particles, compared with the SLM part with adding a small amount of finer-sized powder. Furthermore, the 316L stainless steel powder with a high oxygen content was prepared by a non-vacuum atomization furnace. Although the 316L stainless steel powder with a high oxygen content can be evenly spread in the SLM process, the surface layer of the powder is easy to form an oxide film during the cooling and solidification of powder inside the molten pool. Under the action of thermal stress, the small crack forms and expands along the oxide film, eventually leading to large cracks inside the melt channel.


Sign in / Sign up

Export Citation Format

Share Document