Effect of High-Energy Ball Milling on the Mg Alloy Powders under Alcohol Protection

2007 ◽  
Vol 534-536 ◽  
pp. 785-788
Author(s):  
Gang Li ◽  
Xing Xing Liu ◽  
Qi Guo ◽  
Jian Ren Tang ◽  
Biao Yan

Study about the feasibility and effect of high-energy ball milling on a specific Mg alloy under protection medium of alcohol was presented via comparing with conventional vacuum milling. More fine particles with wider powder size distribution but more irregular shape were shown from image analysis of the SEM pictures of the powder milled under alcohol. No obvious oxide was revealed from the X-ray diffraction of the two kinds of Mg alloy powders with limited milling time. And since slip induced in a preferential direction, the (002) texture was formed in the Mg alloy powders at the initial stage of alcohol milling. With deformation occurred randomly, the texture disappeared regularly. More O and Fe contaminants were introduced into the powders milled under alcohol according to the EDS analysis, for which the hot-pressed Mg alloy samples fabricated with that powders exhibited lower UTS.

2007 ◽  
Vol 561-565 ◽  
pp. 1251-1254
Author(s):  
Hong Wei Ni ◽  
Hang He ◽  
G.Q. Li ◽  
Wei Ting Zhan ◽  
Da Qiang Cang ◽  
...  

Preparation of nanocrystalline 430L stainless steel powders by high-energy ball milling has been investigated. The samples were characterized by scanning electron microscope (SEM), X-ray Diffraction (XRD) and Matersizer. The SEM observation confirmed that the cold welding and fragmentation behaviors occurred during high-energy ball milling, which has important effect on the changes of the particle size. In the initial stage (0-10h), particle size increased and crystalline grain size decreased evidently. The mean particle size got to 330μm and the crystalline grain size got to 23nm for sample of 10h ball milling. In the later stage, the particle size decreased and the refinement of crystalline grain became difficult. The crystalline grain size of sample for 50h ball milling only got to 15nm.


ChemInform ◽  
2011 ◽  
Vol 42 (32) ◽  
pp. no-no
Author(s):  
E. V. Sampathkumaran ◽  
K. Mukherjee ◽  
Kartik K. Iyer ◽  
Niharika Mohapatra ◽  
Sitikantha D. Das

1995 ◽  
Vol 95 (11) ◽  
pp. 771-773 ◽  
Author(s):  
Jifan Hu ◽  
Yizhong Wang ◽  
Kaiying Wang ◽  
Boping Hu ◽  
Fuming Yang ◽  
...  

2006 ◽  
Vol 168 (1-3) ◽  
pp. 1057-1063 ◽  
Author(s):  
Ligia E. Zamora ◽  
G. A. Perez Alcazar ◽  
J. M. Greneche ◽  
S. Suriñach

2007 ◽  
Vol 353-358 ◽  
pp. 1625-1628 ◽  
Author(s):  
Gen Shun Ji ◽  
Qin Ma ◽  
Tie Ming Guo ◽  
Qi Zhou ◽  
Jian Gang Jia ◽  
...  

The high energy ball milling of Ni-50 atom % Si elemental powder mixtures was carried out using a planetary mill. X-ray diffraction (XRD) was used to identify the phase evolutions during the high energy ball milling period. The microstructure morphology of the powders milled different time was determined by field emission scanning electron microscope (FESEM). The beginning time of mechanical alloying was determined by back scattered electrons (BSE) images. The XRD patterns showed that the nickel peaks intensity and the silicon peaks intensity obviously decreased with milling time increased to 1 hour. BSE images revealed that nickel and silicon powders were not blended uniformly for 1 hour of milling. It was found that NiSi formed as the milling time increased to 5 hours, simultaneously, the nickel peaks and the silicon peaks almost disappeared. That means the obvious mechanical alloying started from 5 hours of milling. BSE images agreed with the result analyzed from XRD patterns. With the milling time further increased from 10 to 75 hours, the NiSi peaks decreased gradually, at the same time, the Ni2Si peaks appeared and then increased gradually.


2006 ◽  
Vol 510-511 ◽  
pp. 698-701
Author(s):  
Pyuck Pa Choi ◽  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Dae Hwan Kwon

Mechanically induced crystallization of an amorphous Fe90Zr10 alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Under high-energy ball-milling in an AGO-2 mill, melt-spun Fe90Zr10 ribbons undergo crystallization into BCC α- Fe(Zr). Zr atoms are found to be solved in the Fe(Zr) grains up to a maximum supersaturation of about 3.5 at.% Zr, where it can be presumed that the remaining Zr atoms are segregated in the grainboundaries. The decomposition degree of the amorphous phase increases with increasing milling time and intensity. It is proposed that the observed crystallization is deformation-induced and rather not attribute to local temperature rises during ball-collisions.


2016 ◽  
Vol 849 ◽  
pp. 844-851
Author(s):  
Juan Zhou ◽  
Yong Chen ◽  
Hong Mei Zhu ◽  
Xiang Fang Fan

The microstructure and strain of gas atomization and water collection Fe73Si3B24 soft magnetic alloy powder treated by high energy ball milling were investigated via SEM and X-ray diffraction. And the magnetic properties of those powders were studied via VSM (Vibrating Sample Magnetometer). The results show that the atomization powders almost exhibited spheric or ellipsoidal shape. The averaged particle size was 104.94 μm. The main phases were composed of α-Fe (Si) and amorphous phase. As ball milling time went on, the interplanar space, amount of amorphous and crystal microstrain of the powders increased, while the grain size decreased. The peak for the (110) crystal plane of α-Fe (Si) phase widened, while the peaks for (200), (211) crystal planes weakened. These three peaks shifted towards to small angle direction. The saturation magnetic induction of treated powders was steady, and the coercivity of samples increased.


2007 ◽  
Vol 353-358 ◽  
pp. 1505-1508
Author(s):  
Zhi Hua Yang ◽  
Yu Zhou ◽  
De Chang Jia ◽  
Qing Chang Meng ◽  
Chang Qing Yu

Amorphous Si-B-C-N ceramics obtained by high energy ball milling and hot pressing using hexagonal boron nitride (h-BN), graphite (C) and amorphous Si as starting materials have been studied. The mechanical milling with high energy resulted in the generation of large amounts of amorphous composites only milled for 5 h. Si-B-C-N powders were consolidation by hot pressing at 1850 °C. X-ray diffraction (XRD) and transmission electron microscopy (TEM) show that small amount of BN and SiC crystal lies in the amorphous matrix. The flexural strength reached the maximal value of 137.2 MPa at a mole ratio of BN/(Si+C) being 0.6.


2011 ◽  
Vol 319-320 ◽  
pp. 61-63 ◽  
Author(s):  
Xiu Yan Guo ◽  
Guo Jin Ma ◽  
Shi Kun Xie ◽  
Rong Xi Yi ◽  
Zhi Gao

Cu-4% mixed-powder consisting of rough copper powder and graphite powder was separately mechanical alloyed by high-energy ball milling. The phases and micrograph of these powders were determined by X-ray diffraction and scanning electron microscopy (SEM). The results show an increase in the lattice parameter of copper with milling times, up to a saturation value of about 24h; There was an absence of graphite reflections from X-ray diffractograms after longer milling times.


Sign in / Sign up

Export Citation Format

Share Document